探空火箭上运行的双组分原子干涉仪载荷

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Michael Elsen, Baptist Piest, Fabian Adam, Oliver Anton, Paweł Arciszewski, Wolfgang Bartosch, Dennis Becker, Kai Bleeke, Jonas Böhm, Sören Boles, Klaus Döringshoff, Priyanka Guggilam, Ortwin Hellmig, Isabell Imwalle, Simon Kanthak, Christian Kürbis, Matthias Koch, Maike Diana Lachmann, Moritz Mihm, Hauke Müntinga, Ayush Mani Nepal, Tim Oberschulte, Peter Ohr, Alexandros Papakonstantinou, Arnau Prat, Christian Reichelt, Jan Sommer, Christian Spindeldreier, Marvin Warner, Thijs Wendrich, André Wenzlawski, Holger Blume, Claus Braxmaier, Daniel Lüdtke, Achim Peters, Ernst Maria Rasel, Klaus Sengstock, Andreas Wicht, Patrick Windpassinger, Jens Grosse
{"title":"探空火箭上运行的双组分原子干涉仪载荷","authors":"Michael Elsen,&nbsp;Baptist Piest,&nbsp;Fabian Adam,&nbsp;Oliver Anton,&nbsp;Paweł Arciszewski,&nbsp;Wolfgang Bartosch,&nbsp;Dennis Becker,&nbsp;Kai Bleeke,&nbsp;Jonas Böhm,&nbsp;Sören Boles,&nbsp;Klaus Döringshoff,&nbsp;Priyanka Guggilam,&nbsp;Ortwin Hellmig,&nbsp;Isabell Imwalle,&nbsp;Simon Kanthak,&nbsp;Christian Kürbis,&nbsp;Matthias Koch,&nbsp;Maike Diana Lachmann,&nbsp;Moritz Mihm,&nbsp;Hauke Müntinga,&nbsp;Ayush Mani Nepal,&nbsp;Tim Oberschulte,&nbsp;Peter Ohr,&nbsp;Alexandros Papakonstantinou,&nbsp;Arnau Prat,&nbsp;Christian Reichelt,&nbsp;Jan Sommer,&nbsp;Christian Spindeldreier,&nbsp;Marvin Warner,&nbsp;Thijs Wendrich,&nbsp;André Wenzlawski,&nbsp;Holger Blume,&nbsp;Claus Braxmaier,&nbsp;Daniel Lüdtke,&nbsp;Achim Peters,&nbsp;Ernst Maria Rasel,&nbsp;Klaus Sengstock,&nbsp;Andreas Wicht,&nbsp;Patrick Windpassinger,&nbsp;Jens Grosse","doi":"10.1007/s12217-023-10068-7","DOIUrl":null,"url":null,"abstract":"<div><p>We report on the design and the construction of a sounding rocket payload capable of performing atom interferometry with Bose-Einstein condensates of <span>\\(^{41}\\)</span>K and <span>\\(^{87}\\)</span>Rb. The apparatus is designed to be launched in two consecutive missions with a VSB-30 sounding rocket and is qualified to withstand the expected vibrational loads of 1.8 g root-mean-square in a frequency range between 20–2000 Hz and the expected static loads during ascent and re-entry of 25 g. We present a modular design of the scientific payload comprising a physics package, a laser system, an electronics system and a battery module. A dedicated on-board software provides a largely automated process of predefined experiments. To operate the payload safely in laboratory and flight mode, a thermal control system and ground support equipment has been implemented and will be presented. The payload presented here represents a cornerstone for future applications of matter wave interferometry with ultracold atoms on satellites.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-023-10068-7.pdf","citationCount":"3","resultStr":"{\"title\":\"A Dual-Species Atom Interferometer Payload for Operation on Sounding Rockets\",\"authors\":\"Michael Elsen,&nbsp;Baptist Piest,&nbsp;Fabian Adam,&nbsp;Oliver Anton,&nbsp;Paweł Arciszewski,&nbsp;Wolfgang Bartosch,&nbsp;Dennis Becker,&nbsp;Kai Bleeke,&nbsp;Jonas Böhm,&nbsp;Sören Boles,&nbsp;Klaus Döringshoff,&nbsp;Priyanka Guggilam,&nbsp;Ortwin Hellmig,&nbsp;Isabell Imwalle,&nbsp;Simon Kanthak,&nbsp;Christian Kürbis,&nbsp;Matthias Koch,&nbsp;Maike Diana Lachmann,&nbsp;Moritz Mihm,&nbsp;Hauke Müntinga,&nbsp;Ayush Mani Nepal,&nbsp;Tim Oberschulte,&nbsp;Peter Ohr,&nbsp;Alexandros Papakonstantinou,&nbsp;Arnau Prat,&nbsp;Christian Reichelt,&nbsp;Jan Sommer,&nbsp;Christian Spindeldreier,&nbsp;Marvin Warner,&nbsp;Thijs Wendrich,&nbsp;André Wenzlawski,&nbsp;Holger Blume,&nbsp;Claus Braxmaier,&nbsp;Daniel Lüdtke,&nbsp;Achim Peters,&nbsp;Ernst Maria Rasel,&nbsp;Klaus Sengstock,&nbsp;Andreas Wicht,&nbsp;Patrick Windpassinger,&nbsp;Jens Grosse\",\"doi\":\"10.1007/s12217-023-10068-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report on the design and the construction of a sounding rocket payload capable of performing atom interferometry with Bose-Einstein condensates of <span>\\\\(^{41}\\\\)</span>K and <span>\\\\(^{87}\\\\)</span>Rb. The apparatus is designed to be launched in two consecutive missions with a VSB-30 sounding rocket and is qualified to withstand the expected vibrational loads of 1.8 g root-mean-square in a frequency range between 20–2000 Hz and the expected static loads during ascent and re-entry of 25 g. We present a modular design of the scientific payload comprising a physics package, a laser system, an electronics system and a battery module. A dedicated on-board software provides a largely automated process of predefined experiments. To operate the payload safely in laboratory and flight mode, a thermal control system and ground support equipment has been implemented and will be presented. The payload presented here represents a cornerstone for future applications of matter wave interferometry with ultracold atoms on satellites.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12217-023-10068-7.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10068-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10068-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 3

摘要

我们报告了一种探空火箭有效载荷的设计和构造,能够用\(^{41}\) K和\(^{87}\) Rb的玻色-爱因斯坦凝聚体进行原子干涉测量。该仪器被设计为与VSB-30探空火箭一起连续两次发射,并有资格承受频率范围在20-2000 Hz之间的1.8 g均方根振动载荷和上升和再入期间25 g的预期静态载荷。我们提出了一种科学有效载荷的模块化设计,包括物理包、激光系统、电子系统和电池模块。专用的机载软件提供了预定义实验的大部分自动化过程。为了在实验室和飞行模式下安全运行有效载荷,一个热控制系统和地面支持设备已经实施并将被展示。本文提出的有效载荷为未来在卫星上应用超冷原子的物质波干涉测量奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Dual-Species Atom Interferometer Payload for Operation on Sounding Rockets

A Dual-Species Atom Interferometer Payload for Operation on Sounding Rockets

We report on the design and the construction of a sounding rocket payload capable of performing atom interferometry with Bose-Einstein condensates of \(^{41}\)K and \(^{87}\)Rb. The apparatus is designed to be launched in two consecutive missions with a VSB-30 sounding rocket and is qualified to withstand the expected vibrational loads of 1.8 g root-mean-square in a frequency range between 20–2000 Hz and the expected static loads during ascent and re-entry of 25 g. We present a modular design of the scientific payload comprising a physics package, a laser system, an electronics system and a battery module. A dedicated on-board software provides a largely automated process of predefined experiments. To operate the payload safely in laboratory and flight mode, a thermal control system and ground support equipment has been implemented and will be presented. The payload presented here represents a cornerstone for future applications of matter wave interferometry with ultracold atoms on satellites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信