${\boldsymbol H}^{\boldsymbol{\infty}}$映射的密集稳定秩和朗格型逼近定理

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Brudnyi
{"title":"${\\boldsymbol H}^{\\boldsymbol{\\infty}}$映射的密集稳定秩和朗格型逼近定理","authors":"A. Brudnyi","doi":"10.1017/S1446788721000045","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$H^\\infty ({\\mathbb {D}}\\times {\\mathbb {N}})$\n be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk \n${\\mathbb {D}}\\subset {{\\mathbb C}}$\n . We show that the dense stable rank of \n$H^\\infty ({\\mathbb {D}}\\times {\\mathbb {N}})$\n is \n$1$\n and, using this fact, prove some nonlinear Runge-type approximation theorems for \n$H^\\infty ({\\mathbb {D}}\\times {\\mathbb {N}})$\n maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for the algebra \n$H^\\infty ({\\mathbb {D}})$\n .","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"5 1","pages":"289 - 317"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DENSE STABLE RANK AND RUNGE-TYPE APPROXIMATION THEOREMS FOR \\n${\\\\boldsymbol H}^{\\\\boldsymbol{\\\\infty}}$\\n MAPS\",\"authors\":\"A. Brudnyi\",\"doi\":\"10.1017/S1446788721000045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$H^\\\\infty ({\\\\mathbb {D}}\\\\times {\\\\mathbb {N}})$\\n be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk \\n${\\\\mathbb {D}}\\\\subset {{\\\\mathbb C}}$\\n . We show that the dense stable rank of \\n$H^\\\\infty ({\\\\mathbb {D}}\\\\times {\\\\mathbb {N}})$\\n is \\n$1$\\n and, using this fact, prove some nonlinear Runge-type approximation theorems for \\n$H^\\\\infty ({\\\\mathbb {D}}\\\\times {\\\\mathbb {N}})$\\n maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for the algebra \\n$H^\\\\infty ({\\\\mathbb {D}})$\\n .\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":\"5 1\",\"pages\":\"289 - 317\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1446788721000045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788721000045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设$H^\infty ({\mathbb {D}}\times {\mathbb {N}})$是定义在开放单位盘${\mathbb {D}}\subset {{\mathbb C}}$的可数拷贝的不相交并上的有界全纯函数的Banach代数。我们证明了$H^\infty ({\mathbb {D}}\times {\mathbb {N}})$的密集稳定秩为$1$,并利用这一事实证明了$H^\infty ({\mathbb {D}}\times {\mathbb {N}})$映射的非线性龙格逼近定理。然后,我们将这些结果应用于代数$H^\infty ({\mathbb {D}})$类似近似问题中近似映射规范的先验一致估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DENSE STABLE RANK AND RUNGE-TYPE APPROXIMATION THEOREMS FOR ${\boldsymbol H}^{\boldsymbol{\infty}}$ MAPS
Abstract Let $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ be the Banach algebra of bounded holomorphic functions defined on the disjoint union of countably many copies of the open unit disk ${\mathbb {D}}\subset {{\mathbb C}}$ . We show that the dense stable rank of $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ is $1$ and, using this fact, prove some nonlinear Runge-type approximation theorems for $H^\infty ({\mathbb {D}}\times {\mathbb {N}})$ maps. Then we apply these results to obtain a priori uniform estimates of norms of approximating maps in similar approximation problems for the algebra $H^\infty ({\mathbb {D}})$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信