N=14阶环切类并的差分集构造

Q4 Multidisciplinary
Benedict Estrella
{"title":"N=14阶环切类并的差分集构造","authors":"Benedict Estrella","doi":"10.32871/rmrj2210.01.04","DOIUrl":null,"url":null,"abstract":"Let G be an additive group of order v, D be a non-empty proper k-subset of G, and λ be any integer. Then D is a (v, k, λ) - difference set if every nonzero element of the group can be expressed as a difference d<sub>1</sub> - d<sub>2</sub> of elements of D in exactly λ ways. Let q be a prime of the form q = nN + 1 for integers n>1 and N>1. For q<1000, this study shows the construction of difference sets in the additive group of the field GF(q) from unions of cyclotomic classes of order N = 14 using a computer search. The construction consisted of computer programs derived from the definitions and theorems on difference sets using Python. The results revealed that only the union of seven cyclotomic classes such as C<sub>0</sub><sup>(14, q)</sup> ∪ C<sub>2</sub><sup>(14, q)</sup> ∪ C<sub>4</sub><sup>(14, q)</sup> ∪ C<sub>6</sub><sup>(14, q)</sup> ∪ C<sub>8</sub><sup>(14, q)</sup> ∪ C<sub>10</sub><sup>(14, q)</sup> ∪ C<sub>12</sub><sup>(14, q)</sup> forms a quadratic cyclotomic difference set. Similarly, this union together with zero forms a difference set equivalent to the modified quadratic cyclotomic difference sets.","PeriodicalId":34442,"journal":{"name":"Recoletos Multidisciplinary Research Journal","volume":"202 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Construction of Difference Sets from Unions of Cyclotomic Classes of Order N=14\",\"authors\":\"Benedict Estrella\",\"doi\":\"10.32871/rmrj2210.01.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be an additive group of order v, D be a non-empty proper k-subset of G, and λ be any integer. Then D is a (v, k, λ) - difference set if every nonzero element of the group can be expressed as a difference d<sub>1</sub> - d<sub>2</sub> of elements of D in exactly λ ways. Let q be a prime of the form q = nN + 1 for integers n>1 and N>1. For q<1000, this study shows the construction of difference sets in the additive group of the field GF(q) from unions of cyclotomic classes of order N = 14 using a computer search. The construction consisted of computer programs derived from the definitions and theorems on difference sets using Python. The results revealed that only the union of seven cyclotomic classes such as C<sub>0</sub><sup>(14, q)</sup> ∪ C<sub>2</sub><sup>(14, q)</sup> ∪ C<sub>4</sub><sup>(14, q)</sup> ∪ C<sub>6</sub><sup>(14, q)</sup> ∪ C<sub>8</sub><sup>(14, q)</sup> ∪ C<sub>10</sub><sup>(14, q)</sup> ∪ C<sub>12</sub><sup>(14, q)</sup> forms a quadratic cyclotomic difference set. Similarly, this union together with zero forms a difference set equivalent to the modified quadratic cyclotomic difference sets.\",\"PeriodicalId\":34442,\"journal\":{\"name\":\"Recoletos Multidisciplinary Research Journal\",\"volume\":\"202 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recoletos Multidisciplinary Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32871/rmrj2210.01.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recoletos Multidisciplinary Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32871/rmrj2210.01.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

摘要

设G是v阶的可加群,D是G的非空固有k子集,λ是任意整数。如果群中的每个非零元素都可以用D中元素的差值d1 - d2以λ的方式表示,则D是一个(v, k, λ)差分集。设对于整数n>1和n>1, q是q = nN + 1形式的素数。对于q0(14, q)∪C2(14, q)∪C4(14, q)∪C6(14, q)∪C8(14, q)∪C10(14, q)∪C12(14, q)构成一个二次环切差分集。同样地,这个并集与零一起形成一个差分集,等价于修正的二次环切差分集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Difference Sets from Unions of Cyclotomic Classes of Order N=14
Let G be an additive group of order v, D be a non-empty proper k-subset of G, and λ be any integer. Then D is a (v, k, λ) - difference set if every nonzero element of the group can be expressed as a difference d1 - d2 of elements of D in exactly λ ways. Let q be a prime of the form q = nN + 1 for integers n>1 and N>1. For q<1000, this study shows the construction of difference sets in the additive group of the field GF(q) from unions of cyclotomic classes of order N = 14 using a computer search. The construction consisted of computer programs derived from the definitions and theorems on difference sets using Python. The results revealed that only the union of seven cyclotomic classes such as C0(14, q) ∪ C2(14, q) ∪ C4(14, q) ∪ C6(14, q) ∪ C8(14, q) ∪ C10(14, q) ∪ C12(14, q) forms a quadratic cyclotomic difference set. Similarly, this union together with zero forms a difference set equivalent to the modified quadratic cyclotomic difference sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信