面向物联网系统的硬件辅助安全

Yier Jin
{"title":"面向物联网系统的硬件辅助安全","authors":"Yier Jin","doi":"10.1109/ISVLSI.2019.00118","DOIUrl":null,"url":null,"abstract":"As computing devices become more commonplace in every day life, we have seen an increase of possible attacks on commercial devices and critical infrastructure. As a result, both academia and industry have proposed solutions to mitigate or outright eliminate the ever expanding set of viable targets. Initially, this resulted in an influx of software-based defenses against these emerging threats. Unfortunately, it was found that software solutions could be bypassed with more advanced attacks and often resulted in high performance overhead. As such, hardware-assisted security defenses have been developed to provide improved security while keeping performance overhead to manageable levels, especially for IoT devices. In this paper, we will provide a survey of prominent hardware-assisted security defenses. We will enumerate the attacks these defenses aim to protect, as well as their effectiveness. We will also discuss the implications in both performance and system design. A comparison between approaches that target the same set of issues, and possible directions for future research will be presented.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"196 1","pages":"632-637"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards Hardware-Assisted Security for IoT Systems\",\"authors\":\"Yier Jin\",\"doi\":\"10.1109/ISVLSI.2019.00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As computing devices become more commonplace in every day life, we have seen an increase of possible attacks on commercial devices and critical infrastructure. As a result, both academia and industry have proposed solutions to mitigate or outright eliminate the ever expanding set of viable targets. Initially, this resulted in an influx of software-based defenses against these emerging threats. Unfortunately, it was found that software solutions could be bypassed with more advanced attacks and often resulted in high performance overhead. As such, hardware-assisted security defenses have been developed to provide improved security while keeping performance overhead to manageable levels, especially for IoT devices. In this paper, we will provide a survey of prominent hardware-assisted security defenses. We will enumerate the attacks these defenses aim to protect, as well as their effectiveness. We will also discuss the implications in both performance and system design. A comparison between approaches that target the same set of issues, and possible directions for future research will be presented.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"196 1\",\"pages\":\"632-637\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着计算设备在日常生活中变得越来越普遍,我们已经看到针对商业设备和关键基础设施的可能攻击有所增加。因此,学术界和工业界都提出了解决方案,以减轻或彻底消除不断扩大的可行目标。最初,这导致了针对这些新出现的威胁的基于软件的防御涌入。不幸的是,发现软件解决方案可以被更高级的攻击绕过,并且经常导致高性能开销。因此,硬件辅助安全防御已经开发出来,以提供更高的安全性,同时将性能开销保持在可管理的水平,特别是对于物联网设备。在本文中,我们将提供一个突出的硬件辅助安全防御的调查。我们将列举这些防御旨在保护的攻击,以及它们的有效性。我们还将讨论性能和系统设计方面的影响。将对针对同一组问题的方法进行比较,并提出未来研究的可能方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Hardware-Assisted Security for IoT Systems
As computing devices become more commonplace in every day life, we have seen an increase of possible attacks on commercial devices and critical infrastructure. As a result, both academia and industry have proposed solutions to mitigate or outright eliminate the ever expanding set of viable targets. Initially, this resulted in an influx of software-based defenses against these emerging threats. Unfortunately, it was found that software solutions could be bypassed with more advanced attacks and often resulted in high performance overhead. As such, hardware-assisted security defenses have been developed to provide improved security while keeping performance overhead to manageable levels, especially for IoT devices. In this paper, we will provide a survey of prominent hardware-assisted security defenses. We will enumerate the attacks these defenses aim to protect, as well as their effectiveness. We will also discuss the implications in both performance and system design. A comparison between approaches that target the same set of issues, and possible directions for future research will be presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信