{"title":"基于改进并行聚类和精英蚁群算法的TSP/mTSP求解方法","authors":"G. Baydogmus","doi":"10.2298/csis220820053b","DOIUrl":null,"url":null,"abstract":"Many problems that were considered complex and unsolvable have started to solve and new technologies have emerged through to the development of GPU technology. Solutions have established for NP-Complete and NP-Hard problems with the acceleration of studies in the field of artificial intelligence, which are very interesting for both mathematicians and computer scientists. The most striking one among such problems is the Traveling Salesman Problem in recent years. This problem has solved by artificial intelligence?s metaheuristic algorithms such as Genetic algorithm and Ant Colony optimization. However, researchers are always looking for a better solution. In this study, it is aimed to design a low-cost and optimized algorithm for Traveling Salesman Problem by using GPU parallelization, Machine Learning, and Artificial Intelligence approaches. In this manner, the proposed algorithm consists of three stages; Cluster the points in the given dataset with K-means clustering, find the shortest path with Ant Colony in each of the clusters, and connect each cluster at the closest point to the other. These three stages were carried out by parallel programming. The most obvious difference of the study from those found in the literature is that it performs all calculations on the GPU by using Elitist Ant Colony Optimization. For the experimental results, examinations were carried out on a wide variety of datasets in TSPLIB and it was seen that the proposed parallel KMeans-Elitist Ant Colony approach increased the performance by 30% compared to its counterparts.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"42 1","pages":"195-214"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solution for TSP/mTSP with an improved parallel clustering and elitist ACO\",\"authors\":\"G. Baydogmus\",\"doi\":\"10.2298/csis220820053b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many problems that were considered complex and unsolvable have started to solve and new technologies have emerged through to the development of GPU technology. Solutions have established for NP-Complete and NP-Hard problems with the acceleration of studies in the field of artificial intelligence, which are very interesting for both mathematicians and computer scientists. The most striking one among such problems is the Traveling Salesman Problem in recent years. This problem has solved by artificial intelligence?s metaheuristic algorithms such as Genetic algorithm and Ant Colony optimization. However, researchers are always looking for a better solution. In this study, it is aimed to design a low-cost and optimized algorithm for Traveling Salesman Problem by using GPU parallelization, Machine Learning, and Artificial Intelligence approaches. In this manner, the proposed algorithm consists of three stages; Cluster the points in the given dataset with K-means clustering, find the shortest path with Ant Colony in each of the clusters, and connect each cluster at the closest point to the other. These three stages were carried out by parallel programming. The most obvious difference of the study from those found in the literature is that it performs all calculations on the GPU by using Elitist Ant Colony Optimization. For the experimental results, examinations were carried out on a wide variety of datasets in TSPLIB and it was seen that the proposed parallel KMeans-Elitist Ant Colony approach increased the performance by 30% compared to its counterparts.\",\"PeriodicalId\":50636,\"journal\":{\"name\":\"Computer Science and Information Systems\",\"volume\":\"42 1\",\"pages\":\"195-214\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2298/csis220820053b\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2298/csis220820053b","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Solution for TSP/mTSP with an improved parallel clustering and elitist ACO
Many problems that were considered complex and unsolvable have started to solve and new technologies have emerged through to the development of GPU technology. Solutions have established for NP-Complete and NP-Hard problems with the acceleration of studies in the field of artificial intelligence, which are very interesting for both mathematicians and computer scientists. The most striking one among such problems is the Traveling Salesman Problem in recent years. This problem has solved by artificial intelligence?s metaheuristic algorithms such as Genetic algorithm and Ant Colony optimization. However, researchers are always looking for a better solution. In this study, it is aimed to design a low-cost and optimized algorithm for Traveling Salesman Problem by using GPU parallelization, Machine Learning, and Artificial Intelligence approaches. In this manner, the proposed algorithm consists of three stages; Cluster the points in the given dataset with K-means clustering, find the shortest path with Ant Colony in each of the clusters, and connect each cluster at the closest point to the other. These three stages were carried out by parallel programming. The most obvious difference of the study from those found in the literature is that it performs all calculations on the GPU by using Elitist Ant Colony Optimization. For the experimental results, examinations were carried out on a wide variety of datasets in TSPLIB and it was seen that the proposed parallel KMeans-Elitist Ant Colony approach increased the performance by 30% compared to its counterparts.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.