{"title":"用相对论柱面波技术计算铂纳米管:手性诱导自旋选择性","authors":"P. D’yachkov, E. D’yachkov","doi":"10.35745/afm2023v03.01.0001","DOIUrl":null,"url":null,"abstract":"Electronic and spin properties of chiral platinum nanotubes are calculated using the relativistic linear augmented cylindrical waves method. The spin-orbit coupling induces the strong splitting of nonrelativistic dispersion curves for the Fermi energy region. The large differences in spin densities of states for spins up and down can be used to create pure spin currents through the tubules. In the two series Pt (5, n2) and Pt (10, n2), the (5, 3) and (10, 7) nanotubes show the strongest chirality-induced spin selectivity effects.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"165 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platinum Nanotubes Calculated Using Relativistic Cylindrical Wave Technique: Chiral Induced Spin Selectivity\",\"authors\":\"P. D’yachkov, E. D’yachkov\",\"doi\":\"10.35745/afm2023v03.01.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic and spin properties of chiral platinum nanotubes are calculated using the relativistic linear augmented cylindrical waves method. The spin-orbit coupling induces the strong splitting of nonrelativistic dispersion curves for the Fermi energy region. The large differences in spin densities of states for spins up and down can be used to create pure spin currents through the tubules. In the two series Pt (5, n2) and Pt (10, n2), the (5, 3) and (10, 7) nanotubes show the strongest chirality-induced spin selectivity effects.\",\"PeriodicalId\":14985,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Functional Materials\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Functional Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.35745/afm2023v03.01.0001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.35745/afm2023v03.01.0001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Electronic and spin properties of chiral platinum nanotubes are calculated using the relativistic linear augmented cylindrical waves method. The spin-orbit coupling induces the strong splitting of nonrelativistic dispersion curves for the Fermi energy region. The large differences in spin densities of states for spins up and down can be used to create pure spin currents through the tubules. In the two series Pt (5, n2) and Pt (10, n2), the (5, 3) and (10, 7) nanotubes show the strongest chirality-induced spin selectivity effects.
期刊介绍:
The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials.
The areas covered by the journal will include:
• Biomaterials / Materials for biomedical applications
• Functional materials
• Hybrid and composite materials
• Soft materials
• Hydrogels
• Nanomaterials
• Gene delivery
• Nonodevices
• Metamaterials
• Active coatings
• Surface functionalization
• Tissue engineering
• Cell delivery/cell encapsulation systems
• 3D printing materials
• Material characterization
• Biomechanics