{"title":"绵羊个体面部识别的大型基准数据集","authors":"Yue Pang, Wenbo Yu, Chuanzhong Xuan, Yongan Zhang, Pei Wu","doi":"10.3390/agriculture13091718","DOIUrl":null,"url":null,"abstract":"The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging and other manual tracking techniques. Although sheep face datasets have been introduced in previous studies, they have often involved pose or background restrictions (e.g., fixing of the subject’s head, cleaning of the face), which restrict data collection and have limited the size of available sample sets. As a result, a comprehensive benchmark designed exclusively for the evaluation of individual sheep recognition algorithms is lacking. To address this issue, this study developed a large-scale benchmark dataset, Sheepface-107, comprising 5350 images acquired from 107 different subjects. Images were collected from each sheep at multiple angles, including front and back views, in a diverse collection that provides a more comprehensive representation of facial features. In addition to the dataset, an assessment protocol was developed by applying multiple evaluation metrics to the results produced by three different deep learning models: VGG16, GoogLeNet, and ResNet50, which achieved F1-scores of 83.79%, 89.11%, and 93.44%, respectively. A statistical analysis of each algorithm suggested that accuracy and the number of parameters were the most informative metrics for use in evaluating recognition performance.","PeriodicalId":48587,"journal":{"name":"Agriculture-Basel","volume":"173 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Large Benchmark Dataset for Individual Sheep Face Recognition\",\"authors\":\"Yue Pang, Wenbo Yu, Chuanzhong Xuan, Yongan Zhang, Pei Wu\",\"doi\":\"10.3390/agriculture13091718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging and other manual tracking techniques. Although sheep face datasets have been introduced in previous studies, they have often involved pose or background restrictions (e.g., fixing of the subject’s head, cleaning of the face), which restrict data collection and have limited the size of available sample sets. As a result, a comprehensive benchmark designed exclusively for the evaluation of individual sheep recognition algorithms is lacking. To address this issue, this study developed a large-scale benchmark dataset, Sheepface-107, comprising 5350 images acquired from 107 different subjects. Images were collected from each sheep at multiple angles, including front and back views, in a diverse collection that provides a more comprehensive representation of facial features. In addition to the dataset, an assessment protocol was developed by applying multiple evaluation metrics to the results produced by three different deep learning models: VGG16, GoogLeNet, and ResNet50, which achieved F1-scores of 83.79%, 89.11%, and 93.44%, respectively. A statistical analysis of each algorithm suggested that accuracy and the number of parameters were the most informative metrics for use in evaluating recognition performance.\",\"PeriodicalId\":48587,\"journal\":{\"name\":\"Agriculture-Basel\",\"volume\":\"173 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture13091718\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agriculture13091718","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
A Large Benchmark Dataset for Individual Sheep Face Recognition
The mutton sheep breeding industry has transformed significantly in recent years, from traditional grassland free-range farming to a more intelligent approach. As a result, automated sheep face recognition systems have become vital to modern breeding practices and have gradually replaced ear tagging and other manual tracking techniques. Although sheep face datasets have been introduced in previous studies, they have often involved pose or background restrictions (e.g., fixing of the subject’s head, cleaning of the face), which restrict data collection and have limited the size of available sample sets. As a result, a comprehensive benchmark designed exclusively for the evaluation of individual sheep recognition algorithms is lacking. To address this issue, this study developed a large-scale benchmark dataset, Sheepface-107, comprising 5350 images acquired from 107 different subjects. Images were collected from each sheep at multiple angles, including front and back views, in a diverse collection that provides a more comprehensive representation of facial features. In addition to the dataset, an assessment protocol was developed by applying multiple evaluation metrics to the results produced by three different deep learning models: VGG16, GoogLeNet, and ResNet50, which achieved F1-scores of 83.79%, 89.11%, and 93.44%, respectively. A statistical analysis of each algorithm suggested that accuracy and the number of parameters were the most informative metrics for use in evaluating recognition performance.
期刊介绍:
Agriculture (ISSN 2077-0472) is an international and cross-disciplinary scholarly and scientific open access journal on the science of cultivating the soil, growing, harvesting crops, and raising livestock. We will aim to look at production, processing, marketing and use of foods, fibers, plants and animals. The journal Agriculturewill publish reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.