利用相位预测的全数字射频锁相环

Q4 Engineering
J. Zhuang, R. Staszewski
{"title":"利用相位预测的全数字射频锁相环","authors":"J. Zhuang, R. Staszewski","doi":"10.2197/IPSJTSLDM.7.2","DOIUrl":null,"url":null,"abstract":"This paper presents an all-digital phase-locked loop (ADPLL) architecture in a new light that allows it to significantly save power through complexity reduction of its phase locking and detection mechanisms. The natural predictive nature of the ADPLL to estimate next edge occurrence of the reference clock is exploited here to reduce the timing range and thus complexity of the fractional part of the phase detection mechanism as implemented by a time-to-digital converter (TDC) and to ease the clock retiming circuit. In addition, the integer part, which counts the DCO clock edges, can be disabled to save power once the loop has achieved lock. It can be widely used in fields of fractional-N frequency multiplication and frequency/phase modulation. The presented principles and techniques have been validated through extensive behavioral simulations as well as fabricated IC chips.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":"4 1","pages":"2-15"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-Digital RF Phase-Locked Loops Exploiting Phase Prediction\",\"authors\":\"J. Zhuang, R. Staszewski\",\"doi\":\"10.2197/IPSJTSLDM.7.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an all-digital phase-locked loop (ADPLL) architecture in a new light that allows it to significantly save power through complexity reduction of its phase locking and detection mechanisms. The natural predictive nature of the ADPLL to estimate next edge occurrence of the reference clock is exploited here to reduce the timing range and thus complexity of the fractional part of the phase detection mechanism as implemented by a time-to-digital converter (TDC) and to ease the clock retiming circuit. In addition, the integer part, which counts the DCO clock edges, can be disabled to save power once the loop has achieved lock. It can be widely used in fields of fractional-N frequency multiplication and frequency/phase modulation. The presented principles and techniques have been validated through extensive behavioral simulations as well as fabricated IC chips.\",\"PeriodicalId\":38964,\"journal\":{\"name\":\"IPSJ Transactions on System LSI Design Methodology\",\"volume\":\"4 1\",\"pages\":\"2-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on System LSI Design Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJTSLDM.7.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTSLDM.7.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的全数字锁相环(ADPLL)结构,通过降低锁相和检测机制的复杂性,可以显著节省功耗。ADPLL估计参考时钟下一个边缘发生的自然预测特性在这里被利用,以减少时序范围,从而减少由时间-数字转换器(TDC)实现的相位检测机制的小数部分的复杂性,并减轻时钟重定时电路。此外,在环路锁定后,可以关闭计算DCO时钟边缘的整数部分,以节省功耗。它可以广泛应用于分数n倍频和频率/相位调制领域。所提出的原理和技术已经通过广泛的行为模拟和制造的集成电路芯片进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All-Digital RF Phase-Locked Loops Exploiting Phase Prediction
This paper presents an all-digital phase-locked loop (ADPLL) architecture in a new light that allows it to significantly save power through complexity reduction of its phase locking and detection mechanisms. The natural predictive nature of the ADPLL to estimate next edge occurrence of the reference clock is exploited here to reduce the timing range and thus complexity of the fractional part of the phase detection mechanism as implemented by a time-to-digital converter (TDC) and to ease the clock retiming circuit. In addition, the integer part, which counts the DCO clock edges, can be disabled to save power once the loop has achieved lock. It can be widely used in fields of fractional-N frequency multiplication and frequency/phase modulation. The presented principles and techniques have been validated through extensive behavioral simulations as well as fabricated IC chips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on System LSI Design Methodology
IPSJ Transactions on System LSI Design Methodology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信