Vivian Alonso-Goulart , Lorraine Braga Ferreira , Cristiane Angélico Duarte , Isabela Lemos de Lima , Enza Rafaela Ferreira , Bárbara Candido de Oliveira , Luna Nascimento Vargas , Dayane Dotto de Moraes , Isaura Beatriz Borges Silva , Rafael de Oliveira Faria , Aline Gomes de Souza , Leticia de Souza Castro-Filice
{"title":"人脂肪组织间充质干细胞与骨修复:文献综述","authors":"Vivian Alonso-Goulart , Lorraine Braga Ferreira , Cristiane Angélico Duarte , Isabela Lemos de Lima , Enza Rafaela Ferreira , Bárbara Candido de Oliveira , Luna Nascimento Vargas , Dayane Dotto de Moraes , Isaura Beatriz Borges Silva , Rafael de Oliveira Faria , Aline Gomes de Souza , Leticia de Souza Castro-Filice","doi":"10.1016/j.biori.2017.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>Mesenchymal stem cells (MSCs) emerge as potential tools for treatment of various diseases. Isolation methods and tissue of origin are important factors that determine the amount of obtained cells and their ability to differentiate. MSCs can be isolated from adipose tissue (ADSCs), bone marrow (BMSCs) or umbilical cord (UC-MSCs), and its characterization must follow the criteria required by the International Society for Cellular Therapy. Osteogenic differentiation capacity of ADSCs can still vary according to the culture medium used, as well as by adding factors that can alter signaling pathways and enhance bone differentiation. In addition, nanotechnology has also been used to increase osteoblastic induction and differentiation. ADSCs enhanced the prospect of treatment in different diseases, and in regenerative medicine, these cells can also be associated with different biomaterials. There is a great progress in studies with ADSCs, mainly because it is easy to access, which makes bioengineering techniques for bone tissue feasible.</p></div>","PeriodicalId":100187,"journal":{"name":"Biotechnology Research and Innovation","volume":"2 1","pages":"Pages 74-80"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.biori.2017.10.005","citationCount":"37","resultStr":"{\"title\":\"Mesenchymal stem cells from human adipose tissue and bone repair: a literature review\",\"authors\":\"Vivian Alonso-Goulart , Lorraine Braga Ferreira , Cristiane Angélico Duarte , Isabela Lemos de Lima , Enza Rafaela Ferreira , Bárbara Candido de Oliveira , Luna Nascimento Vargas , Dayane Dotto de Moraes , Isaura Beatriz Borges Silva , Rafael de Oliveira Faria , Aline Gomes de Souza , Leticia de Souza Castro-Filice\",\"doi\":\"10.1016/j.biori.2017.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mesenchymal stem cells (MSCs) emerge as potential tools for treatment of various diseases. Isolation methods and tissue of origin are important factors that determine the amount of obtained cells and their ability to differentiate. MSCs can be isolated from adipose tissue (ADSCs), bone marrow (BMSCs) or umbilical cord (UC-MSCs), and its characterization must follow the criteria required by the International Society for Cellular Therapy. Osteogenic differentiation capacity of ADSCs can still vary according to the culture medium used, as well as by adding factors that can alter signaling pathways and enhance bone differentiation. In addition, nanotechnology has also been used to increase osteoblastic induction and differentiation. ADSCs enhanced the prospect of treatment in different diseases, and in regenerative medicine, these cells can also be associated with different biomaterials. There is a great progress in studies with ADSCs, mainly because it is easy to access, which makes bioengineering techniques for bone tissue feasible.</p></div>\",\"PeriodicalId\":100187,\"journal\":{\"name\":\"Biotechnology Research and Innovation\",\"volume\":\"2 1\",\"pages\":\"Pages 74-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.biori.2017.10.005\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Research and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452072117300187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Research and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452072117300187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesenchymal stem cells from human adipose tissue and bone repair: a literature review
Mesenchymal stem cells (MSCs) emerge as potential tools for treatment of various diseases. Isolation methods and tissue of origin are important factors that determine the amount of obtained cells and their ability to differentiate. MSCs can be isolated from adipose tissue (ADSCs), bone marrow (BMSCs) or umbilical cord (UC-MSCs), and its characterization must follow the criteria required by the International Society for Cellular Therapy. Osteogenic differentiation capacity of ADSCs can still vary according to the culture medium used, as well as by adding factors that can alter signaling pathways and enhance bone differentiation. In addition, nanotechnology has also been used to increase osteoblastic induction and differentiation. ADSCs enhanced the prospect of treatment in different diseases, and in regenerative medicine, these cells can also be associated with different biomaterials. There is a great progress in studies with ADSCs, mainly because it is easy to access, which makes bioengineering techniques for bone tissue feasible.