{"title":"激进经验主义和机器学习研究","authors":"J. Pearl","doi":"10.1515/jci-2021-0006","DOIUrl":null,"url":null,"abstract":"Abstract I contrast the “data fitting” vs “data interpreting” approaches to data science along three dimensions: Expediency, Transparency, and Explainability. “Data fitting” is driven by the faith that the secret to rational decisions lies in the data itself. In contrast, the data-interpreting school views data, not as a sole source of knowledge but as an auxiliary means for interpreting reality, and “reality” stands for the processes that generate the data. I argue for restoring balance to data science through a task-dependent symbiosis of fitting and interpreting, guided by the Logic of Causation.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"47 1","pages":"78 - 82"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Radical empiricism and machine learning research\",\"authors\":\"J. Pearl\",\"doi\":\"10.1515/jci-2021-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract I contrast the “data fitting” vs “data interpreting” approaches to data science along three dimensions: Expediency, Transparency, and Explainability. “Data fitting” is driven by the faith that the secret to rational decisions lies in the data itself. In contrast, the data-interpreting school views data, not as a sole source of knowledge but as an auxiliary means for interpreting reality, and “reality” stands for the processes that generate the data. I argue for restoring balance to data science through a task-dependent symbiosis of fitting and interpreting, guided by the Logic of Causation.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"47 1\",\"pages\":\"78 - 82\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2021-0006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2021-0006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Abstract I contrast the “data fitting” vs “data interpreting” approaches to data science along three dimensions: Expediency, Transparency, and Explainability. “Data fitting” is driven by the faith that the secret to rational decisions lies in the data itself. In contrast, the data-interpreting school views data, not as a sole source of knowledge but as an auxiliary means for interpreting reality, and “reality” stands for the processes that generate the data. I argue for restoring balance to data science through a task-dependent symbiosis of fitting and interpreting, guided by the Logic of Causation.
期刊介绍:
Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.