基于最大熵准则卡尔曼滤波的虚拟化服务器动态CPU资源分配

Evagoras Makridis, K. M. Deliparaschos, Evangelia Kalyvianaki, Themistoklis Charalambous
{"title":"基于最大熵准则卡尔曼滤波的虚拟化服务器动态CPU资源分配","authors":"Evagoras Makridis, K. M. Deliparaschos, Evangelia Kalyvianaki, Themistoklis Charalambous","doi":"10.1109/ETFA.2017.8247677","DOIUrl":null,"url":null,"abstract":"Virtualized servers have been the key for the efficient deployment of cloud applications. As the application demand increases, it is important to dynamically adjust the CPU allocation of each component in order to save resources for other applications and keep performance high, e.g., the client mean response time (mRT) should be kept below a Quality of Service (QoS) target. In this work, a new form of Kalman filter, called the Maximum Correntropy Criterion Kalman Filter (MCC-KF), has been used in order to predict, and hence, adjust the CPU allocations of each component while the RUBiS auction site workload changes randomly as the number of clients varies. MCC-KF has shown high performance when the noise is non-Gaussian, as it is the case in the CPU usage. Numerical evaluations compare our designed framework with other current state-of-the-art using real-data via the RUBiS benchmark website deployed on a prototype Xen-virtualized cluster.","PeriodicalId":6522,"journal":{"name":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"151 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic CPU resource provisioning in virtualized servers using maximum correntropy criterion Kalman filters\",\"authors\":\"Evagoras Makridis, K. M. Deliparaschos, Evangelia Kalyvianaki, Themistoklis Charalambous\",\"doi\":\"10.1109/ETFA.2017.8247677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtualized servers have been the key for the efficient deployment of cloud applications. As the application demand increases, it is important to dynamically adjust the CPU allocation of each component in order to save resources for other applications and keep performance high, e.g., the client mean response time (mRT) should be kept below a Quality of Service (QoS) target. In this work, a new form of Kalman filter, called the Maximum Correntropy Criterion Kalman Filter (MCC-KF), has been used in order to predict, and hence, adjust the CPU allocations of each component while the RUBiS auction site workload changes randomly as the number of clients varies. MCC-KF has shown high performance when the noise is non-Gaussian, as it is the case in the CPU usage. Numerical evaluations compare our designed framework with other current state-of-the-art using real-data via the RUBiS benchmark website deployed on a prototype Xen-virtualized cluster.\",\"PeriodicalId\":6522,\"journal\":{\"name\":\"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"151 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2017.8247677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2017.8247677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

虚拟化服务器一直是高效部署云应用程序的关键。随着应用程序需求的增加,动态调整每个组件的CPU分配非常重要,以便为其他应用程序节省资源并保持高性能,例如,客户端平均响应时间(mRT)应保持在服务质量(QoS)目标以下。在这项工作中,一种新形式的卡尔曼滤波器,称为最大相关系数标准卡尔曼滤波器(MCC-KF),已被用于预测,从而调整每个组件的CPU分配,而RUBiS拍卖站点工作负载随客户端数量的变化而随机变化。当噪声是非高斯噪声时,MCC-KF显示出高性能,因为它是CPU使用的情况。数值评估使用部署在xen虚拟集群原型上的RUBiS基准网站上的真实数据,将我们设计的框架与其他当前最先进的框架进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic CPU resource provisioning in virtualized servers using maximum correntropy criterion Kalman filters
Virtualized servers have been the key for the efficient deployment of cloud applications. As the application demand increases, it is important to dynamically adjust the CPU allocation of each component in order to save resources for other applications and keep performance high, e.g., the client mean response time (mRT) should be kept below a Quality of Service (QoS) target. In this work, a new form of Kalman filter, called the Maximum Correntropy Criterion Kalman Filter (MCC-KF), has been used in order to predict, and hence, adjust the CPU allocations of each component while the RUBiS auction site workload changes randomly as the number of clients varies. MCC-KF has shown high performance when the noise is non-Gaussian, as it is the case in the CPU usage. Numerical evaluations compare our designed framework with other current state-of-the-art using real-data via the RUBiS benchmark website deployed on a prototype Xen-virtualized cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信