时间尺度上具有时变时滞的Wilson-Cowan网络周期解的指数稳定性

Jinxiang Cai, Zhenkun Huang, Honghua Bin
{"title":"时间尺度上具有时变时滞的Wilson-Cowan网络周期解的指数稳定性","authors":"Jinxiang Cai, Zhenkun Huang, Honghua Bin","doi":"10.1155/2014/750532","DOIUrl":null,"url":null,"abstract":"We present stability analysis of delayed Wilson-Cowan networks on time scales. By applying the theory of calculus on time scales, the contraction mapping principle, and Lyapunov functional, new sufficient conditions are obtained to ensure the existence and exponential stability of periodic solution to the considered system. The obtained results are general and can be applied to discrete-time or continuous-time Wilson-Cowan networks.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"61 1","pages":"750532:1-750532:10"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Stability of Periodic Solution to Wilson-Cowan Networks with Time-Varying Delays on Time Scales\",\"authors\":\"Jinxiang Cai, Zhenkun Huang, Honghua Bin\",\"doi\":\"10.1155/2014/750532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present stability analysis of delayed Wilson-Cowan networks on time scales. By applying the theory of calculus on time scales, the contraction mapping principle, and Lyapunov functional, new sufficient conditions are obtained to ensure the existence and exponential stability of periodic solution to the considered system. The obtained results are general and can be applied to discrete-time or continuous-time Wilson-Cowan networks.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"61 1\",\"pages\":\"750532:1-750532:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/750532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/750532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了时滞Wilson-Cowan网络在时间尺度上的稳定性分析。利用时间尺度上的微积分理论、收缩映射原理和Lyapunov泛函,得到了系统周期解存在性和指数稳定性的新的充分条件。所得结果具有普遍性,可应用于离散时间或连续时间Wilson-Cowan网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Stability of Periodic Solution to Wilson-Cowan Networks with Time-Varying Delays on Time Scales
We present stability analysis of delayed Wilson-Cowan networks on time scales. By applying the theory of calculus on time scales, the contraction mapping principle, and Lyapunov functional, new sufficient conditions are obtained to ensure the existence and exponential stability of periodic solution to the considered system. The obtained results are general and can be applied to discrete-time or continuous-time Wilson-Cowan networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信