{"title":"基于最优访问问题的时变交换平均场博弈","authors":"Fabio Bagagiolo, Luciano Marzufero","doi":"10.3934/jdg.2022019","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable are at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from <inline-formula><tex-math id=\"M1\">\\begin{document}$ 0 $\\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id=\"M2\">\\begin{document}$ 1 $\\end{document}</tex-math></inline-formula> of one component of the string <inline-formula><tex-math id=\"M3\">\\begin{document}$ p = (p_1, \\ldots, p_n) $\\end{document}</tex-math></inline-formula> which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by <inline-formula><tex-math id=\"M4\">\\begin{document}$ i = 1, \\ldots, n $\\end{document}</tex-math></inline-formula>. The goal is to reach the final string <inline-formula><tex-math id=\"M5\">\\begin{document}$ (1, \\ldots, 1) $\\end{document}</tex-math></inline-formula> in the final time <inline-formula><tex-math id=\"M6\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula>, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\varepsilon $\\end{document}</tex-math></inline-formula>-mean-field equilibrium and then address the passage to the limit when <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\varepsilon $\\end{document}</tex-math></inline-formula> goes to <inline-formula><tex-math id=\"M9\">\\begin{document}$ 0 $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"78 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time-dependent switching mean-field game on networks motivated by optimal visiting problems\",\"authors\":\"Fabio Bagagiolo, Luciano Marzufero\",\"doi\":\"10.3934/jdg.2022019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable are at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ 0 $\\\\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ 1 $\\\\end{document}</tex-math></inline-formula> of one component of the string <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ p = (p_1, \\\\ldots, p_n) $\\\\end{document}</tex-math></inline-formula> which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ i = 1, \\\\ldots, n $\\\\end{document}</tex-math></inline-formula>. The goal is to reach the final string <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ (1, \\\\ldots, 1) $\\\\end{document}</tex-math></inline-formula> in the final time <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ T $\\\\end{document}</tex-math></inline-formula>, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\varepsilon $\\\\end{document}</tex-math></inline-formula>-mean-field equilibrium and then address the passage to the limit when <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ \\\\varepsilon $\\\\end{document}</tex-math></inline-formula> goes to <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ 0 $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2022019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2022019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable are at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from \begin{document}$ 0 $\end{document} to \begin{document}$ 1 $\end{document} of one component of the string \begin{document}$ p = (p_1, \ldots, p_n) $\end{document} which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by \begin{document}$ i = 1, \ldots, n $\end{document}. The goal is to reach the final string \begin{document}$ (1, \ldots, 1) $\end{document} in the final time \begin{document}$ T $\end{document}, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated \begin{document}$ \varepsilon $\end{document}-mean-field equilibrium and then address the passage to the limit when \begin{document}$ \varepsilon $\end{document} goes to \begin{document}$ 0 $\end{document}.
A time-dependent switching mean-field game on networks motivated by optimal visiting problems
Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable are at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from \begin{document}$ 0 $\end{document} to \begin{document}$ 1 $\end{document} of one component of the string \begin{document}$ p = (p_1, \ldots, p_n) $\end{document} which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by \begin{document}$ i = 1, \ldots, n $\end{document}. The goal is to reach the final string \begin{document}$ (1, \ldots, 1) $\end{document} in the final time \begin{document}$ T $\end{document}, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated \begin{document}$ \varepsilon $\end{document}-mean-field equilibrium and then address the passage to the limit when \begin{document}$ \varepsilon $\end{document} goes to \begin{document}$ 0 $\end{document}.
期刊介绍:
The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.