Lucas Aragão, Maurício Collares, João Pedro Marciano, Taísa Martins, Robert Morris
{"title":"集色拉姆齐数的下限。","authors":"Lucas Aragão, Maurício Collares, João Pedro Marciano, Taísa Martins, Robert Morris","doi":"10.1002/rsa.21173","DOIUrl":null,"url":null,"abstract":"<p><p>The set-coloring Ramsey number <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> is defined to be the minimum <math><mrow><mrow><mi>n</mi></mrow></mrow></math> such that if each edge of the complete graph <math><mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mrow></math> is assigned a set of <math><mrow><mrow><mi>s</mi></mrow></mrow></math> colors from <math><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>…</mi><mo>,</mo><mi>r</mi><mo>}</mo></mrow></mrow></math>, then one of the colors contains a monochromatic clique of size <math><mrow><mrow><mi>k</mi></mrow></mrow></math>. The case <math><mrow><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></mrow></math> is the usual <math><mrow><mrow><mi>r</mi></mrow></mrow></math>-color Ramsey number, and the case <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mn>1</mn></mrow></mrow></math> was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general <math><mrow><mrow><mi>s</mi></mrow></mrow></math> were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>Θ</mi><mo>(</mo><mi>k</mi><mi>r</mi><mo>)</mo></mrow></msup></mrow></mrow></math> if <math><mrow><mrow><mi>s</mi><mo>/</mo><mi>r</mi></mrow></mrow></math> is bounded away from 0 and 1. In the range <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mi>o</mi><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math>, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> up to polylogarithmic factors in the exponent for essentially all <math><mrow><mrow><mi>r</mi></mrow></mrow></math>, <math><mrow><mrow><mi>s</mi></mrow></mrow></math>, and <math><mrow><mrow><mi>k</mi></mrow></mrow></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952192/pdf/","citationCount":"0","resultStr":"{\"title\":\"A lower bound for set-coloring Ramsey numbers.\",\"authors\":\"Lucas Aragão, Maurício Collares, João Pedro Marciano, Taísa Martins, Robert Morris\",\"doi\":\"10.1002/rsa.21173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The set-coloring Ramsey number <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> is defined to be the minimum <math><mrow><mrow><mi>n</mi></mrow></mrow></math> such that if each edge of the complete graph <math><mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mrow></math> is assigned a set of <math><mrow><mrow><mi>s</mi></mrow></mrow></math> colors from <math><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>…</mi><mo>,</mo><mi>r</mi><mo>}</mo></mrow></mrow></math>, then one of the colors contains a monochromatic clique of size <math><mrow><mrow><mi>k</mi></mrow></mrow></math>. The case <math><mrow><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></mrow></math> is the usual <math><mrow><mrow><mi>r</mi></mrow></mrow></math>-color Ramsey number, and the case <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mn>1</mn></mrow></mrow></math> was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general <math><mrow><mrow><mi>s</mi></mrow></mrow></math> were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>Θ</mi><mo>(</mo><mi>k</mi><mi>r</mi><mo>)</mo></mrow></msup></mrow></mrow></math> if <math><mrow><mrow><mi>s</mi><mo>/</mo><mi>r</mi></mrow></mrow></math> is bounded away from 0 and 1. In the range <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mi>o</mi><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math>, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> up to polylogarithmic factors in the exponent for essentially all <math><mrow><mrow><mi>r</mi></mrow></mrow></math>, <math><mrow><mrow><mi>s</mi></mrow></mrow></math>, and <math><mrow><mrow><mi>k</mi></mrow></mrow></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
集合着色拉姆齐数 Rr,s(k)的定义是:如果完整图 Kn 的每条边都从 {1,...,r}中分配了一组 s 种颜色,则其中一种颜色包含大小为 k 的单色小块,那么最小 n 的集合着色拉姆齐数 Rr,s(k)。康伦、福克斯、何、穆巴伊、苏克和韦斯特拉特直到最近才首次获得关于一般 s 的重要结果,他们证明了如果 s/r 在 0 和 1 之间有界,则 Rr,s(k)=2Θ(kr)。在本说明中,我们引入了一种新的(随机)着色,并用它来确定 Rr,s(k),基本上所有 r、s 和 k 的指数都可以达到多对数因子。
The set-coloring Ramsey number is defined to be the minimum such that if each edge of the complete graph is assigned a set of colors from , then one of the colors contains a monochromatic clique of size . The case is the usual -color Ramsey number, and the case was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that if is bounded away from 0 and 1. In the range , however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine up to polylogarithmic factors in the exponent for essentially all , , and .