集色拉姆齐数的下限。

IF 4 3区 医学 Q2 VIROLOGY
Journal of Clinical Virology Pub Date : 2024-03-01 Epub Date: 2023-08-03 DOI:10.1002/rsa.21173
Lucas Aragão, Maurício Collares, João Pedro Marciano, Taísa Martins, Robert Morris
{"title":"集色拉姆齐数的下限。","authors":"Lucas Aragão, Maurício Collares, João Pedro Marciano, Taísa Martins, Robert Morris","doi":"10.1002/rsa.21173","DOIUrl":null,"url":null,"abstract":"<p><p>The set-coloring Ramsey number <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> is defined to be the minimum <math><mrow><mrow><mi>n</mi></mrow></mrow></math> such that if each edge of the complete graph <math><mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mrow></math> is assigned a set of <math><mrow><mrow><mi>s</mi></mrow></mrow></math> colors from <math><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>…</mi><mo>,</mo><mi>r</mi><mo>}</mo></mrow></mrow></math>, then one of the colors contains a monochromatic clique of size <math><mrow><mrow><mi>k</mi></mrow></mrow></math>. The case <math><mrow><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></mrow></math> is the usual <math><mrow><mrow><mi>r</mi></mrow></mrow></math>-color Ramsey number, and the case <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mn>1</mn></mrow></mrow></math> was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general <math><mrow><mrow><mi>s</mi></mrow></mrow></math> were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>Θ</mi><mo>(</mo><mi>k</mi><mi>r</mi><mo>)</mo></mrow></msup></mrow></mrow></math> if <math><mrow><mrow><mi>s</mi><mo>/</mo><mi>r</mi></mrow></mrow></math> is bounded away from 0 and 1. In the range <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mi>o</mi><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math>, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> up to polylogarithmic factors in the exponent for essentially all <math><mrow><mrow><mi>r</mi></mrow></mrow></math>, <math><mrow><mrow><mi>s</mi></mrow></mrow></math>, and <math><mrow><mrow><mi>k</mi></mrow></mrow></math>.</p>","PeriodicalId":15517,"journal":{"name":"Journal of Clinical Virology","volume":"82 1","pages":"157-169"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952192/pdf/","citationCount":"0","resultStr":"{\"title\":\"A lower bound for set-coloring Ramsey numbers.\",\"authors\":\"Lucas Aragão, Maurício Collares, João Pedro Marciano, Taísa Martins, Robert Morris\",\"doi\":\"10.1002/rsa.21173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The set-coloring Ramsey number <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> is defined to be the minimum <math><mrow><mrow><mi>n</mi></mrow></mrow></math> such that if each edge of the complete graph <math><mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mrow></math> is assigned a set of <math><mrow><mrow><mi>s</mi></mrow></mrow></math> colors from <math><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>…</mi><mo>,</mo><mi>r</mi><mo>}</mo></mrow></mrow></math>, then one of the colors contains a monochromatic clique of size <math><mrow><mrow><mi>k</mi></mrow></mrow></math>. The case <math><mrow><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></mrow></math> is the usual <math><mrow><mrow><mi>r</mi></mrow></mrow></math>-color Ramsey number, and the case <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mn>1</mn></mrow></mrow></math> was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general <math><mrow><mrow><mi>s</mi></mrow></mrow></math> were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>Θ</mi><mo>(</mo><mi>k</mi><mi>r</mi><mo>)</mo></mrow></msup></mrow></mrow></math> if <math><mrow><mrow><mi>s</mi><mo>/</mo><mi>r</mi></mrow></mrow></math> is bounded away from 0 and 1. In the range <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mi>o</mi><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math>, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> up to polylogarithmic factors in the exponent for essentially all <math><mrow><mrow><mi>r</mi></mrow></mrow></math>, <math><mrow><mrow><mi>s</mi></mrow></mrow></math>, and <math><mrow><mrow><mi>k</mi></mrow></mrow></math>.</p>\",\"PeriodicalId\":15517,\"journal\":{\"name\":\"Journal of Clinical Virology\",\"volume\":\"82 1\",\"pages\":\"157-169\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Virology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21173\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Virology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21173","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

集合着色拉姆齐数 Rr,s(k)的定义是:如果完整图 Kn 的每条边都从 {1,...,r}中分配了一组 s 种颜色,则其中一种颜色包含大小为 k 的单色小块,那么最小 n 的集合着色拉姆齐数 Rr,s(k)。康伦、福克斯、何、穆巴伊、苏克和韦斯特拉特直到最近才首次获得关于一般 s 的重要结果,他们证明了如果 s/r 在 0 和 1 之间有界,则 Rr,s(k)=2Θ(kr)。在本说明中,我们引入了一种新的(随机)着色,并用它来确定 Rr,s(k),基本上所有 r、s 和 k 的指数都可以达到多对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower bound for set-coloring Ramsey numbers.

The set-coloring Ramsey number Rr,s(k) is defined to be the minimum n such that if each edge of the complete graph Kn is assigned a set of s colors from {1,,r}, then one of the colors contains a monochromatic clique of size k. The case s=1 is the usual r-color Ramsey number, and the case s=r-1 was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general s were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that Rr,s(k)=2Θ(kr) if s/r is bounded away from 0 and 1. In the range s=r-o(r), however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine Rr,s(k) up to polylogarithmic factors in the exponent for essentially all r, s, and k.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Virology
Journal of Clinical Virology 医学-病毒学
CiteScore
22.70
自引率
1.10%
发文量
149
审稿时长
24 days
期刊介绍: The Journal of Clinical Virology, an esteemed international publication, serves as the official journal for both the Pan American Society for Clinical Virology and The European Society for Clinical Virology. Dedicated to advancing the understanding of human virology in clinical settings, the Journal of Clinical Virology focuses on disseminating research papers and reviews pertaining to the clinical aspects of virology. Its scope encompasses articles discussing diagnostic methodologies and virus-induced clinical conditions, with an emphasis on practicality and relevance to clinical practice. The journal publishes on topics that include: • new diagnostic technologies • nucleic acid amplification and serologic testing • targeted and metagenomic next-generation sequencing • emerging pandemic viral threats • respiratory viruses • transplant viruses • chronic viral infections • cancer-associated viruses • gastrointestinal viruses • central nervous system viruses • one health (excludes animal health)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信