基于小波变换域的头皮脑电信号识别及非恒定癫痫检测的通道选择

A. Das, Md Jubaer Hossain Pantho, M. Bhuiyan
{"title":"基于小波变换域的头皮脑电信号识别及非恒定癫痫检测的通道选择","authors":"A. Das, Md Jubaer Hossain Pantho, M. Bhuiyan","doi":"10.1109/CEEE.2015.7428297","DOIUrl":null,"url":null,"abstract":"In this paper, a statistical method of classifying Electroencephalogram (EEG) data for automatic detection of epileptic seizure is carried out using a publicly available scalp EEG database. The classification is carried out to distinguish the seizure segments from the non-seizure ones. The higher order moments (specifically variance) have been calculated in various sub-bands in the wavelet transform domain and utilized as the discriminating feature in the Support Vector Machine(SVM) classifier. The method is tested on 175 hours of continuous EEG data from five patients and on an average, 99% accuracy has been achieved with very high values of sensitivity and specificity. Furthermore, on the basis of the figure of merits, for their excellent performance for all the patients, seven channels have been selected for the patient-invariant seizure detection which might help the electroencephalographers reducing their laborious job of monitoring the EEG data from all the channels.","PeriodicalId":6490,"journal":{"name":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","volume":"36 1","pages":"77-80"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Discrimination of scalp EEG signals in wavelet transform domain and channel selection for the patient-invariant seizure detection\",\"authors\":\"A. Das, Md Jubaer Hossain Pantho, M. Bhuiyan\",\"doi\":\"10.1109/CEEE.2015.7428297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a statistical method of classifying Electroencephalogram (EEG) data for automatic detection of epileptic seizure is carried out using a publicly available scalp EEG database. The classification is carried out to distinguish the seizure segments from the non-seizure ones. The higher order moments (specifically variance) have been calculated in various sub-bands in the wavelet transform domain and utilized as the discriminating feature in the Support Vector Machine(SVM) classifier. The method is tested on 175 hours of continuous EEG data from five patients and on an average, 99% accuracy has been achieved with very high values of sensitivity and specificity. Furthermore, on the basis of the figure of merits, for their excellent performance for all the patients, seven channels have been selected for the patient-invariant seizure detection which might help the electroencephalographers reducing their laborious job of monitoring the EEG data from all the channels.\",\"PeriodicalId\":6490,\"journal\":{\"name\":\"2015 International Conference on Electrical & Electronic Engineering (ICEEE)\",\"volume\":\"36 1\",\"pages\":\"77-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical & Electronic Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEE.2015.7428297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEE.2015.7428297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文利用公开的头皮脑电图数据库,对脑电图数据进行统计分类,用于癫痫发作的自动检测。进行分类是为了区分癫痫发作段和非癫痫发作段。在小波变换域的各个子带中计算高阶矩(特别是方差),并将其作为支持向量机(SVM)分类器的判别特征。该方法对5名患者175小时的连续脑电图数据进行了测试,平均准确率达到99%,具有很高的灵敏度和特异性。此外,基于对所有患者的优异表现,本文选择了7个通道用于患者不变癫痫检测,这可能有助于脑电图医生减少从所有通道监测脑电图数据的繁重工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrimination of scalp EEG signals in wavelet transform domain and channel selection for the patient-invariant seizure detection
In this paper, a statistical method of classifying Electroencephalogram (EEG) data for automatic detection of epileptic seizure is carried out using a publicly available scalp EEG database. The classification is carried out to distinguish the seizure segments from the non-seizure ones. The higher order moments (specifically variance) have been calculated in various sub-bands in the wavelet transform domain and utilized as the discriminating feature in the Support Vector Machine(SVM) classifier. The method is tested on 175 hours of continuous EEG data from five patients and on an average, 99% accuracy has been achieved with very high values of sensitivity and specificity. Furthermore, on the basis of the figure of merits, for their excellent performance for all the patients, seven channels have been selected for the patient-invariant seizure detection which might help the electroencephalographers reducing their laborious job of monitoring the EEG data from all the channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信