{"title":"微藻绿色合成金属纳米颗粒研究进展","authors":"Rodica CHIHAI (PEȚU), A. Saracu, C. Ungureanu","doi":"10.35219/mms.2022.3.03","DOIUrl":null,"url":null,"abstract":"Nanometallic materials are metals and alloys that form nanocrystalline grains with particle size of about 5 to100 nm. In materials science, “green synthesis” has become a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials such as metal oxides, hybrids, and bio-inspired materials. Nowadays, a wide range of physico-chemical methods are used for the synthesis of nanoparticles. Green synthesis is found to be superior over physical and hemical method as it is economically feasible, environmentally friendly, scaled up for massscale production without any complexity. Several biological approaches, including the utilization of plant extracts, enzymes, bacteria, fungi, and algae, are being studied in order to enable a more environmentally sound synthesis of nanoparticles. Because these techniques are regarded as safe and environmentally responsible for the production of nanomaterials as an alternative to conventional methods, the development of green methods for the synthesis of nanoparticles is developing into a significant area of nanotechnology. \n","PeriodicalId":22358,"journal":{"name":"The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of Metal Nanoparticles using Microalgae: A Review\",\"authors\":\"Rodica CHIHAI (PEȚU), A. Saracu, C. Ungureanu\",\"doi\":\"10.35219/mms.2022.3.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanometallic materials are metals and alloys that form nanocrystalline grains with particle size of about 5 to100 nm. In materials science, “green synthesis” has become a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials such as metal oxides, hybrids, and bio-inspired materials. Nowadays, a wide range of physico-chemical methods are used for the synthesis of nanoparticles. Green synthesis is found to be superior over physical and hemical method as it is economically feasible, environmentally friendly, scaled up for massscale production without any complexity. Several biological approaches, including the utilization of plant extracts, enzymes, bacteria, fungi, and algae, are being studied in order to enable a more environmentally sound synthesis of nanoparticles. Because these techniques are regarded as safe and environmentally responsible for the production of nanomaterials as an alternative to conventional methods, the development of green methods for the synthesis of nanoparticles is developing into a significant area of nanotechnology. \\n\",\"PeriodicalId\":22358,\"journal\":{\"name\":\"The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35219/mms.2022.3.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35219/mms.2022.3.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green Synthesis of Metal Nanoparticles using Microalgae: A Review
Nanometallic materials are metals and alloys that form nanocrystalline grains with particle size of about 5 to100 nm. In materials science, “green synthesis” has become a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials such as metal oxides, hybrids, and bio-inspired materials. Nowadays, a wide range of physico-chemical methods are used for the synthesis of nanoparticles. Green synthesis is found to be superior over physical and hemical method as it is economically feasible, environmentally friendly, scaled up for massscale production without any complexity. Several biological approaches, including the utilization of plant extracts, enzymes, bacteria, fungi, and algae, are being studied in order to enable a more environmentally sound synthesis of nanoparticles. Because these techniques are regarded as safe and environmentally responsible for the production of nanomaterials as an alternative to conventional methods, the development of green methods for the synthesis of nanoparticles is developing into a significant area of nanotechnology.