M. Albalbaki, Ola Al-fawares, Walid Aburayyan, Nesrin Seder, O. Al-Sanabra, Lamya AL- Tahrawe, M. N. Shatnawi
{"title":"COVID-19患者凝血功能级联基因突变与d -二聚体水平升高的相关性","authors":"M. Albalbaki, Ola Al-fawares, Walid Aburayyan, Nesrin Seder, O. Al-Sanabra, Lamya AL- Tahrawe, M. N. Shatnawi","doi":"10.7324/japs.2023.145308","DOIUrl":null,"url":null,"abstract":"SARS-CoV-2 had a pertinent implication on people’s daily lives and medical procedures during the pandemic or even after it. COVID-19 infections varied in the clinical aspect from mortality to asymptomatic episodes. The symptoms included fever, cough, difficulty breathing, loss of mobility, and chest pain. On the other hand, the patients who passed away from COVID-19 showed multiple organ failure, respiratory dysfunction, and disseminated coagulations throughout the body. D-dimer is a biomarker implemented in blood clotting and is commonly elevated in patients with thrombotic complications. This review sheds light on the correlation between gene mutations in the coagulopathy cascade among COVID-19 patients with high D-dimer levels. The elevated D-dimer levels are significantly associated with mutations in genes involved in the coagulopathy cascade. The findings suggest that these mutations may play an important role in developing thrombotic problems in COVID-19 patients. As a result, understanding the genetic basis of thrombotic development in COVID-19 could lead to new ways of avoiding and treating thrombotic problems.","PeriodicalId":15126,"journal":{"name":"journal of applied pharmaceutical science","volume":"175 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The correlation of gene mutation of coagulopathy cascade with elevated D-dimer levels in COVID-19 patients\",\"authors\":\"M. Albalbaki, Ola Al-fawares, Walid Aburayyan, Nesrin Seder, O. Al-Sanabra, Lamya AL- Tahrawe, M. N. Shatnawi\",\"doi\":\"10.7324/japs.2023.145308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SARS-CoV-2 had a pertinent implication on people’s daily lives and medical procedures during the pandemic or even after it. COVID-19 infections varied in the clinical aspect from mortality to asymptomatic episodes. The symptoms included fever, cough, difficulty breathing, loss of mobility, and chest pain. On the other hand, the patients who passed away from COVID-19 showed multiple organ failure, respiratory dysfunction, and disseminated coagulations throughout the body. D-dimer is a biomarker implemented in blood clotting and is commonly elevated in patients with thrombotic complications. This review sheds light on the correlation between gene mutations in the coagulopathy cascade among COVID-19 patients with high D-dimer levels. The elevated D-dimer levels are significantly associated with mutations in genes involved in the coagulopathy cascade. The findings suggest that these mutations may play an important role in developing thrombotic problems in COVID-19 patients. As a result, understanding the genetic basis of thrombotic development in COVID-19 could lead to new ways of avoiding and treating thrombotic problems.\",\"PeriodicalId\":15126,\"journal\":{\"name\":\"journal of applied pharmaceutical science\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"journal of applied pharmaceutical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7324/japs.2023.145308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"journal of applied pharmaceutical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/japs.2023.145308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
The correlation of gene mutation of coagulopathy cascade with elevated D-dimer levels in COVID-19 patients
SARS-CoV-2 had a pertinent implication on people’s daily lives and medical procedures during the pandemic or even after it. COVID-19 infections varied in the clinical aspect from mortality to asymptomatic episodes. The symptoms included fever, cough, difficulty breathing, loss of mobility, and chest pain. On the other hand, the patients who passed away from COVID-19 showed multiple organ failure, respiratory dysfunction, and disseminated coagulations throughout the body. D-dimer is a biomarker implemented in blood clotting and is commonly elevated in patients with thrombotic complications. This review sheds light on the correlation between gene mutations in the coagulopathy cascade among COVID-19 patients with high D-dimer levels. The elevated D-dimer levels are significantly associated with mutations in genes involved in the coagulopathy cascade. The findings suggest that these mutations may play an important role in developing thrombotic problems in COVID-19 patients. As a result, understanding the genetic basis of thrombotic development in COVID-19 could lead to new ways of avoiding and treating thrombotic problems.
期刊介绍:
Journal of Applied Pharmaceutical Science (JAPS) is a monthly, international, open access, journal dedicated to various disciplines of pharmaceutical and allied sciences. JAPS publishes manuscripts (Original research and review articles Mini-reviews, Short communication) on original work, either experimental or theoretical in the following areas; Pharmaceutics & Biopharmaceutics Novel & Targeted Drug Delivery Nanotechnology & Nanomedicine Pharmaceutical Chemistry Pharmacognosy & Ethnobotany Phytochemistry Pharmacology & Toxicology Pharmaceutical Biotechnology & Microbiology Pharmacy practice & Hospital Pharmacy Pharmacogenomics Pharmacovigilance Natural Product Research Drug Regulatory Affairs Case Study & Full clinical trials Biomaterials & Bioactive polymers Analytical Chemistry Physical Pharmacy.