{"title":"一系列双氢烷氧苄氧嘧啶(DABO)衍生物的非核苷类HIV-1逆转录酶抑制活性:CoMFA, CoMSIA和对接研究","authors":"B. Sarkar, Ananda Sarkar, A. D. Jana","doi":"10.14233/ajomc.2020.ajomc-p289","DOIUrl":null,"url":null,"abstract":"CoMFA, CoMSIA and molecular docking studies have been carried out for a set of 42 dihydroalkoxybenzyloxopyrimidine (DABO) derivatives for which anti-HIV activity values are available. In 3D-QSAR studies-comparative molecular field analysis (CoMFA) as well as comparative molecular similarity indices analysis (CoMSIA) have been performed. Both the QSAR model nicely explains the inhibitory activities of DABO derivatives as well as provides molecular level insights revealing which regions in 3D space around the molecules are more important for their anti HIVactivities. These models have a quite high square correlation coefficient (r2 = 0.817 for CoMFA and r2 = 0.943 for CoMSIA). A docking study of the highest active molecule into the binding site of the protein HIV-1 RT (PDB ID-1RT1) shows that hydrogen bonding between pyrimidine moiety of the ligand and the Lysine-101 moiety along with Valine-106 moiety of the HIV protein play most important role for stabilizing the ligand in the binding pocket of the protein.","PeriodicalId":8846,"journal":{"name":"Asian Journal of Organic & Medicinal Chemistry","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Nucleoside HIV-1 Reverse Transcriptase Inhibition Activity of a\\nSeries of Dihydroalkoxybenzyloxopyrimidine (DABO) Derivatives:\\nCoMFA, CoMSIA and Docking Studies\",\"authors\":\"B. Sarkar, Ananda Sarkar, A. D. Jana\",\"doi\":\"10.14233/ajomc.2020.ajomc-p289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CoMFA, CoMSIA and molecular docking studies have been carried out for a set of 42 dihydroalkoxybenzyloxopyrimidine (DABO) derivatives for which anti-HIV activity values are available. In 3D-QSAR studies-comparative molecular field analysis (CoMFA) as well as comparative molecular similarity indices analysis (CoMSIA) have been performed. Both the QSAR model nicely explains the inhibitory activities of DABO derivatives as well as provides molecular level insights revealing which regions in 3D space around the molecules are more important for their anti HIVactivities. These models have a quite high square correlation coefficient (r2 = 0.817 for CoMFA and r2 = 0.943 for CoMSIA). A docking study of the highest active molecule into the binding site of the protein HIV-1 RT (PDB ID-1RT1) shows that hydrogen bonding between pyrimidine moiety of the ligand and the Lysine-101 moiety along with Valine-106 moiety of the HIV protein play most important role for stabilizing the ligand in the binding pocket of the protein.\",\"PeriodicalId\":8846,\"journal\":{\"name\":\"Asian Journal of Organic & Medicinal Chemistry\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Organic & Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14233/ajomc.2020.ajomc-p289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic & Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14233/ajomc.2020.ajomc-p289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Nucleoside HIV-1 Reverse Transcriptase Inhibition Activity of a
Series of Dihydroalkoxybenzyloxopyrimidine (DABO) Derivatives:
CoMFA, CoMSIA and Docking Studies
CoMFA, CoMSIA and molecular docking studies have been carried out for a set of 42 dihydroalkoxybenzyloxopyrimidine (DABO) derivatives for which anti-HIV activity values are available. In 3D-QSAR studies-comparative molecular field analysis (CoMFA) as well as comparative molecular similarity indices analysis (CoMSIA) have been performed. Both the QSAR model nicely explains the inhibitory activities of DABO derivatives as well as provides molecular level insights revealing which regions in 3D space around the molecules are more important for their anti HIVactivities. These models have a quite high square correlation coefficient (r2 = 0.817 for CoMFA and r2 = 0.943 for CoMSIA). A docking study of the highest active molecule into the binding site of the protein HIV-1 RT (PDB ID-1RT1) shows that hydrogen bonding between pyrimidine moiety of the ligand and the Lysine-101 moiety along with Valine-106 moiety of the HIV protein play most important role for stabilizing the ligand in the binding pocket of the protein.