一类FLRW时空中拟线性不定Neumann问题正解的全局分岔

IF 0.5 4区 数学 Q3 MATHEMATICS
Zhongzi Zhao, R. Ma
{"title":"一类FLRW时空中拟线性不定Neumann问题正解的全局分岔","authors":"Zhongzi Zhao, R. Ma","doi":"10.1063/5.0145781","DOIUrl":null,"url":null,"abstract":"We are concerned with the global structure of the radial positive solution set of the radially symmetric prescribed curvature problem with the Neumann boundary condition in some Friedmann–Lemaître–Robertson–Walker spacetimes. The proof of our main result is based on bifurcation techniques.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"123 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global bifurcation of positive solutions of a quasilinear indefinite Neumann problem in some FLRW spacetimes\",\"authors\":\"Zhongzi Zhao, R. Ma\",\"doi\":\"10.1063/5.0145781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with the global structure of the radial positive solution set of the radially symmetric prescribed curvature problem with the Neumann boundary condition in some Friedmann–Lemaître–Robertson–Walker spacetimes. The proof of our main result is based on bifurcation techniques.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0145781\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0145781","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有Neumann边界条件的径向对称规定曲率问题在某些friedman - lema - robertson - walker时空中的径向正解集的整体结构。我们主要结果的证明是基于分岔技术的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global bifurcation of positive solutions of a quasilinear indefinite Neumann problem in some FLRW spacetimes
We are concerned with the global structure of the radial positive solution set of the radially symmetric prescribed curvature problem with the Neumann boundary condition in some Friedmann–Lemaître–Robertson–Walker spacetimes. The proof of our main result is based on bifurcation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信