低弗劳德数下浅水流动的半隐式多尺度格式

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Vater, R. Klein
{"title":"低弗劳德数下浅水流动的半隐式多尺度格式","authors":"S. Vater, R. Klein","doi":"10.2140/CAMCOS.2018.13.303","DOIUrl":null,"url":null,"abstract":"A new large time step semi-implicit multiscale method is presented for the solution of low Froude-number shallow water flows. While on small scales which are under-resolved in time the impact of source terms on the divergence of the flow is essentially balanced, on large resolved scales the scheme propagates free gravity waves with minimized diffusion. The scheme features a scale decomposition based on multigrid ideas. Two different time integrators are blended at each scale depending on the scale-dependent Courant number for gravity wave propagation. The finite-volume discretization is based on a Cartesian grid and is second order accurate. The basic properties of the method are validated by numerical tests. This development is a further step in the development of asymptotically adaptive numerical methods for the computation of large scale atmospheric flows.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A semi-implicit multiscale scheme for shallow water flows at low Froude number\",\"authors\":\"S. Vater, R. Klein\",\"doi\":\"10.2140/CAMCOS.2018.13.303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new large time step semi-implicit multiscale method is presented for the solution of low Froude-number shallow water flows. While on small scales which are under-resolved in time the impact of source terms on the divergence of the flow is essentially balanced, on large resolved scales the scheme propagates free gravity waves with minimized diffusion. The scheme features a scale decomposition based on multigrid ideas. Two different time integrators are blended at each scale depending on the scale-dependent Courant number for gravity wave propagation. The finite-volume discretization is based on a Cartesian grid and is second order accurate. The basic properties of the method are validated by numerical tests. This development is a further step in the development of asymptotically adaptive numerical methods for the computation of large scale atmospheric flows.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/CAMCOS.2018.13.303\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/CAMCOS.2018.13.303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

提出了求解低弗劳德数浅水流的一种新的大时间步长半隐式多尺度方法。在时间分辨率不高的小尺度上,源项对气流散度的影响基本上是平衡的,而在大尺度上,该方案以最小的扩散传播自由重力波。该方案的特点是基于多网格思想的尺度分解。根据重力波传播的尺度相关科朗数,在每个尺度上混合两个不同的时间积分器。有限体积离散基于笛卡尔网格,具有二阶精度。数值试验验证了该方法的基本特性。这一发展是大尺度大气流动计算渐近自适应数值方法发展的又一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semi-implicit multiscale scheme for shallow water flows at low Froude number
A new large time step semi-implicit multiscale method is presented for the solution of low Froude-number shallow water flows. While on small scales which are under-resolved in time the impact of source terms on the divergence of the flow is essentially balanced, on large resolved scales the scheme propagates free gravity waves with minimized diffusion. The scheme features a scale decomposition based on multigrid ideas. Two different time integrators are blended at each scale depending on the scale-dependent Courant number for gravity wave propagation. The finite-volume discretization is based on a Cartesian grid and is second order accurate. The basic properties of the method are validated by numerical tests. This development is a further step in the development of asymptotically adaptive numerical methods for the computation of large scale atmospheric flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信