{"title":"低弗劳德数下浅水流动的半隐式多尺度格式","authors":"S. Vater, R. Klein","doi":"10.2140/CAMCOS.2018.13.303","DOIUrl":null,"url":null,"abstract":"A new large time step semi-implicit multiscale method is presented for the solution of low Froude-number shallow water flows. While on small scales which are under-resolved in time the impact of source terms on the divergence of the flow is essentially balanced, on large resolved scales the scheme propagates free gravity waves with minimized diffusion. The scheme features a scale decomposition based on multigrid ideas. Two different time integrators are blended at each scale depending on the scale-dependent Courant number for gravity wave propagation. The finite-volume discretization is based on a Cartesian grid and is second order accurate. The basic properties of the method are validated by numerical tests. This development is a further step in the development of asymptotically adaptive numerical methods for the computation of large scale atmospheric flows.","PeriodicalId":49265,"journal":{"name":"Communications in Applied Mathematics and Computational Science","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A semi-implicit multiscale scheme for shallow water flows at low Froude number\",\"authors\":\"S. Vater, R. Klein\",\"doi\":\"10.2140/CAMCOS.2018.13.303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new large time step semi-implicit multiscale method is presented for the solution of low Froude-number shallow water flows. While on small scales which are under-resolved in time the impact of source terms on the divergence of the flow is essentially balanced, on large resolved scales the scheme propagates free gravity waves with minimized diffusion. The scheme features a scale decomposition based on multigrid ideas. Two different time integrators are blended at each scale depending on the scale-dependent Courant number for gravity wave propagation. The finite-volume discretization is based on a Cartesian grid and is second order accurate. The basic properties of the method are validated by numerical tests. This development is a further step in the development of asymptotically adaptive numerical methods for the computation of large scale atmospheric flows.\",\"PeriodicalId\":49265,\"journal\":{\"name\":\"Communications in Applied Mathematics and Computational Science\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2018-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied Mathematics and Computational Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/CAMCOS.2018.13.303\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied Mathematics and Computational Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/CAMCOS.2018.13.303","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A semi-implicit multiscale scheme for shallow water flows at low Froude number
A new large time step semi-implicit multiscale method is presented for the solution of low Froude-number shallow water flows. While on small scales which are under-resolved in time the impact of source terms on the divergence of the flow is essentially balanced, on large resolved scales the scheme propagates free gravity waves with minimized diffusion. The scheme features a scale decomposition based on multigrid ideas. Two different time integrators are blended at each scale depending on the scale-dependent Courant number for gravity wave propagation. The finite-volume discretization is based on a Cartesian grid and is second order accurate. The basic properties of the method are validated by numerical tests. This development is a further step in the development of asymptotically adaptive numerical methods for the computation of large scale atmospheric flows.
期刊介绍:
CAMCoS accepts innovative papers in all areas where mathematics and applications interact. In particular, the journal welcomes papers where an idea is followed from beginning to end — from an abstract beginning to a piece of software, or from a computational observation to a mathematical theory.