DR. Robin Kumar Samuel, Dr. N. Kanthavelkumaran, D. A. M. Retna
{"title":"微波吸收应用:铁增强天然纤维复合材料电磁和力学性能的表征","authors":"DR. Robin Kumar Samuel, Dr. N. Kanthavelkumaran, D. A. M. Retna","doi":"10.37896/pd91.4/91441","DOIUrl":null,"url":null,"abstract":"It is still difficult to create an effective microwave absorption composite made of natural Fibers that also has strong tensile and electromagnetic properties. In this study, experiments are carried out to create new hybrid microwave absorbent composites made of jute Fibers bonded with iron. This experimental study's goal is to improve absorption and widen the absorption bandwidth while maintaining acceptable tensile properties. Hence four samples have been used been created and tested with varying iron levels and a constant jute Fiber content. The waveguide-based microwave measuring approach has been used to measure the electromagnetic parameters. It is discovered that an ideal sample has good X-band microwave absorption characteristics. Additionally, the created composite is put to the tensile test, where it is discovered to have an average Young's modulus. Current investigation to observe the values of 9.4 GPa for the modulus, 0.08 for the ultimate strain, and an average ultimate 49 MPa is the tensile strength value. Analyses using a scanning electron microscope were used for the interior failure behavior of the tensile-tested specimen and establish the primary mechanisms of failure like matrix cracking, Fiber breaking, and delamination failure. The outcomes show the potential of the manufactured composite for diverse tactical uses. determined (transmission and reflection coefficients). At room temperature, all measurements were taken.","PeriodicalId":20006,"journal":{"name":"Periodico Di Mineralogia","volume":"42 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave absorbing applications: Characterization of the Electromagnetic and Mechanical Properties of Iron Reinforced Natural Fiber Composites\",\"authors\":\"DR. Robin Kumar Samuel, Dr. N. Kanthavelkumaran, D. A. M. Retna\",\"doi\":\"10.37896/pd91.4/91441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is still difficult to create an effective microwave absorption composite made of natural Fibers that also has strong tensile and electromagnetic properties. In this study, experiments are carried out to create new hybrid microwave absorbent composites made of jute Fibers bonded with iron. This experimental study's goal is to improve absorption and widen the absorption bandwidth while maintaining acceptable tensile properties. Hence four samples have been used been created and tested with varying iron levels and a constant jute Fiber content. The waveguide-based microwave measuring approach has been used to measure the electromagnetic parameters. It is discovered that an ideal sample has good X-band microwave absorption characteristics. Additionally, the created composite is put to the tensile test, where it is discovered to have an average Young's modulus. Current investigation to observe the values of 9.4 GPa for the modulus, 0.08 for the ultimate strain, and an average ultimate 49 MPa is the tensile strength value. Analyses using a scanning electron microscope were used for the interior failure behavior of the tensile-tested specimen and establish the primary mechanisms of failure like matrix cracking, Fiber breaking, and delamination failure. The outcomes show the potential of the manufactured composite for diverse tactical uses. determined (transmission and reflection coefficients). At room temperature, all measurements were taken.\",\"PeriodicalId\":20006,\"journal\":{\"name\":\"Periodico Di Mineralogia\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodico Di Mineralogia\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.37896/pd91.4/91441\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodico Di Mineralogia","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.37896/pd91.4/91441","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Microwave absorbing applications: Characterization of the Electromagnetic and Mechanical Properties of Iron Reinforced Natural Fiber Composites
It is still difficult to create an effective microwave absorption composite made of natural Fibers that also has strong tensile and electromagnetic properties. In this study, experiments are carried out to create new hybrid microwave absorbent composites made of jute Fibers bonded with iron. This experimental study's goal is to improve absorption and widen the absorption bandwidth while maintaining acceptable tensile properties. Hence four samples have been used been created and tested with varying iron levels and a constant jute Fiber content. The waveguide-based microwave measuring approach has been used to measure the electromagnetic parameters. It is discovered that an ideal sample has good X-band microwave absorption characteristics. Additionally, the created composite is put to the tensile test, where it is discovered to have an average Young's modulus. Current investigation to observe the values of 9.4 GPa for the modulus, 0.08 for the ultimate strain, and an average ultimate 49 MPa is the tensile strength value. Analyses using a scanning electron microscope were used for the interior failure behavior of the tensile-tested specimen and establish the primary mechanisms of failure like matrix cracking, Fiber breaking, and delamination failure. The outcomes show the potential of the manufactured composite for diverse tactical uses. determined (transmission and reflection coefficients). At room temperature, all measurements were taken.
期刊介绍:
Periodico di Mineralogia is an international peer-reviewed Open Access journal publishing Research Articles, Letters and Reviews in Mineralogy, Crystallography, Geochemistry, Ore Deposits, Petrology, Volcanology and applied topics on Environment, Archaeometry and Cultural Heritage. The journal aims at encouraging scientists to publish their experimental and theoretical results in as much detail as possible. Accordingly, there is no restriction on article length. Additional data may be hosted on the web sites as Supplementary Information. The journal does not have article submission and processing charges. Colour is free of charges both on line and printed and no Open Access fees are requested. Short publication time is assured.
Periodico di Mineralogia is property of Sapienza Università di Roma and is published, both online and printed, three times a year.