M. Mahjoob, Seyed A. Sheikholeslami, Morvarid Dadras, Hamdollah Mansouri, Mahshid Haghi, Mohammadreza Naderian, Leila Sadeghi, M. Tabary, I. Khaheshi
{"title":"心脏生物标志物评估联合心肌二维应变超声心动图对早期发现蒽环类药物相关心脏毒性的预后价值","authors":"M. Mahjoob, Seyed A. Sheikholeslami, Morvarid Dadras, Hamdollah Mansouri, Mahshid Haghi, Mohammadreza Naderian, Leila Sadeghi, M. Tabary, I. Khaheshi","doi":"10.2174/1871529X19666190912150942","DOIUrl":null,"url":null,"abstract":"Background: Anthracyclines, a widely used chemotherapy agent with a definite survival improvement, can result in cardiac toxicity presenting with HF (heart failure). Objective: We aim to assess the predictive value of cardiac biomarkers assessment in combination with myocardial two-dimensional strain echocardiography for early detection of cardiac toxicity in patients who underwent Anthracycline-based chemotherapy. Methods: Fifty-two consecutive adult patients scheduled to undergo the first course of Anthracycline-based chemotherapy were subjected to the study. All the patients underwent highly sensitive 2D echocardiographic evaluation before the treatment, 4 and 12 weeks after completion of first-course chemotherapy. Longitudinal and segmental strains were measured. Serum levels of High-sensitive cardiac troponin I (hscTn-I) and N-terminal-pro-BNP (NT-proBNP) were also assessed before the initiation and 3 weeks after completion of first-course chemotherapy. Results: Fifteen patients (28.8%) revealed a decrease in LVEF (Left Ventricular Ejection Fraction) throughout the evaluations, while just 5 patients met the criteria of cardiac toxicity (9.6%). AUC for Global Longitudinal Strain (GLS) ROC curve at 4 weeks of follow-up was calculated to be 0.968. Inferoseptal Systolic Longitudinal Strain (SLS) had the highest AUC value (AUC: 0.934) among different wall SLS. LVESD (Left Ventricular End-Systolic Diameter) at first and second evaluation could predict the risk of cardiac toxicity among LVESD, LVEDD (Left Ventricular End Diastolic Diameter) and LVEDV (Left Ventricular End-Diastolic Volume). Among cardiac biomarkers, hs-cTnI had higher sensitivity, while NT-proBNP had higher specificity for cardiac toxicity. Conclusion: This study has shown that hs-cTnI with good sensitivity can predict cardiac toxicity in Anthracycline-based chemotherapy receiver. The use of strain with speckle echocardiography method has a prognostic value; however, both longitudinal and segmental strain should be assessed. Lateral and inferoseptal SLS (Segmental Longitudinal Strain) are specific markers of cardiac toxicity in the course of anthracycline-related cardiac toxicity.","PeriodicalId":93925,"journal":{"name":"Cardiovascular & hematological disorders drug targets","volume":"59 1","pages":"74 - 83"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prognostic Value of Cardiac Biomarkers Assessment in Combination with Myocardial 2D Strain Echocardiography for Early Detection of Anthracycline-Related Cardiac Toxicity\",\"authors\":\"M. Mahjoob, Seyed A. Sheikholeslami, Morvarid Dadras, Hamdollah Mansouri, Mahshid Haghi, Mohammadreza Naderian, Leila Sadeghi, M. Tabary, I. Khaheshi\",\"doi\":\"10.2174/1871529X19666190912150942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Anthracyclines, a widely used chemotherapy agent with a definite survival improvement, can result in cardiac toxicity presenting with HF (heart failure). Objective: We aim to assess the predictive value of cardiac biomarkers assessment in combination with myocardial two-dimensional strain echocardiography for early detection of cardiac toxicity in patients who underwent Anthracycline-based chemotherapy. Methods: Fifty-two consecutive adult patients scheduled to undergo the first course of Anthracycline-based chemotherapy were subjected to the study. All the patients underwent highly sensitive 2D echocardiographic evaluation before the treatment, 4 and 12 weeks after completion of first-course chemotherapy. Longitudinal and segmental strains were measured. Serum levels of High-sensitive cardiac troponin I (hscTn-I) and N-terminal-pro-BNP (NT-proBNP) were also assessed before the initiation and 3 weeks after completion of first-course chemotherapy. Results: Fifteen patients (28.8%) revealed a decrease in LVEF (Left Ventricular Ejection Fraction) throughout the evaluations, while just 5 patients met the criteria of cardiac toxicity (9.6%). AUC for Global Longitudinal Strain (GLS) ROC curve at 4 weeks of follow-up was calculated to be 0.968. Inferoseptal Systolic Longitudinal Strain (SLS) had the highest AUC value (AUC: 0.934) among different wall SLS. LVESD (Left Ventricular End-Systolic Diameter) at first and second evaluation could predict the risk of cardiac toxicity among LVESD, LVEDD (Left Ventricular End Diastolic Diameter) and LVEDV (Left Ventricular End-Diastolic Volume). Among cardiac biomarkers, hs-cTnI had higher sensitivity, while NT-proBNP had higher specificity for cardiac toxicity. Conclusion: This study has shown that hs-cTnI with good sensitivity can predict cardiac toxicity in Anthracycline-based chemotherapy receiver. The use of strain with speckle echocardiography method has a prognostic value; however, both longitudinal and segmental strain should be assessed. Lateral and inferoseptal SLS (Segmental Longitudinal Strain) are specific markers of cardiac toxicity in the course of anthracycline-related cardiac toxicity.\",\"PeriodicalId\":93925,\"journal\":{\"name\":\"Cardiovascular & hematological disorders drug targets\",\"volume\":\"59 1\",\"pages\":\"74 - 83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular & hematological disorders drug targets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1871529X19666190912150942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular & hematological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871529X19666190912150942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prognostic Value of Cardiac Biomarkers Assessment in Combination with Myocardial 2D Strain Echocardiography for Early Detection of Anthracycline-Related Cardiac Toxicity
Background: Anthracyclines, a widely used chemotherapy agent with a definite survival improvement, can result in cardiac toxicity presenting with HF (heart failure). Objective: We aim to assess the predictive value of cardiac biomarkers assessment in combination with myocardial two-dimensional strain echocardiography for early detection of cardiac toxicity in patients who underwent Anthracycline-based chemotherapy. Methods: Fifty-two consecutive adult patients scheduled to undergo the first course of Anthracycline-based chemotherapy were subjected to the study. All the patients underwent highly sensitive 2D echocardiographic evaluation before the treatment, 4 and 12 weeks after completion of first-course chemotherapy. Longitudinal and segmental strains were measured. Serum levels of High-sensitive cardiac troponin I (hscTn-I) and N-terminal-pro-BNP (NT-proBNP) were also assessed before the initiation and 3 weeks after completion of first-course chemotherapy. Results: Fifteen patients (28.8%) revealed a decrease in LVEF (Left Ventricular Ejection Fraction) throughout the evaluations, while just 5 patients met the criteria of cardiac toxicity (9.6%). AUC for Global Longitudinal Strain (GLS) ROC curve at 4 weeks of follow-up was calculated to be 0.968. Inferoseptal Systolic Longitudinal Strain (SLS) had the highest AUC value (AUC: 0.934) among different wall SLS. LVESD (Left Ventricular End-Systolic Diameter) at first and second evaluation could predict the risk of cardiac toxicity among LVESD, LVEDD (Left Ventricular End Diastolic Diameter) and LVEDV (Left Ventricular End-Diastolic Volume). Among cardiac biomarkers, hs-cTnI had higher sensitivity, while NT-proBNP had higher specificity for cardiac toxicity. Conclusion: This study has shown that hs-cTnI with good sensitivity can predict cardiac toxicity in Anthracycline-based chemotherapy receiver. The use of strain with speckle echocardiography method has a prognostic value; however, both longitudinal and segmental strain should be assessed. Lateral and inferoseptal SLS (Segmental Longitudinal Strain) are specific markers of cardiac toxicity in the course of anthracycline-related cardiac toxicity.