{"title":"基于碳纳米管束的低损耗集成电感","authors":"A. Nieuwoudt, Y. Massoud","doi":"10.1109/NANO.2007.4601288","DOIUrl":null,"url":null,"abstract":"In this paper, we propose low loss on-chip inductors for mixed-signal circuits leveraging single-walled carbon nanotube (SWCNT) bundles. We develop a model for the high frequency current re-distribution in SWCNT bundles, which we find can have a large effect on the resistance and quality factor of nanotube-based inductors. We compare the performance of optimized inductors realized using SWCNT bundles and standard copper technology. The results indicate that SWCNT bundle-based inductors can provide up to a 144% increase in quality factor. The higher quality factors of SWCNT bundle-based inductors enable up to an 80% power consumption decrease in low noise amplifiers, which are critical circuits in integrated wireless receivers.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"79 1","pages":"714-718"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Carbon nanotube bundle-based low loss integrated inductors\",\"authors\":\"A. Nieuwoudt, Y. Massoud\",\"doi\":\"10.1109/NANO.2007.4601288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose low loss on-chip inductors for mixed-signal circuits leveraging single-walled carbon nanotube (SWCNT) bundles. We develop a model for the high frequency current re-distribution in SWCNT bundles, which we find can have a large effect on the resistance and quality factor of nanotube-based inductors. We compare the performance of optimized inductors realized using SWCNT bundles and standard copper technology. The results indicate that SWCNT bundle-based inductors can provide up to a 144% increase in quality factor. The higher quality factors of SWCNT bundle-based inductors enable up to an 80% power consumption decrease in low noise amplifiers, which are critical circuits in integrated wireless receivers.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"79 1\",\"pages\":\"714-718\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon nanotube bundle-based low loss integrated inductors
In this paper, we propose low loss on-chip inductors for mixed-signal circuits leveraging single-walled carbon nanotube (SWCNT) bundles. We develop a model for the high frequency current re-distribution in SWCNT bundles, which we find can have a large effect on the resistance and quality factor of nanotube-based inductors. We compare the performance of optimized inductors realized using SWCNT bundles and standard copper technology. The results indicate that SWCNT bundle-based inductors can provide up to a 144% increase in quality factor. The higher quality factors of SWCNT bundle-based inductors enable up to an 80% power consumption decrease in low noise amplifiers, which are critical circuits in integrated wireless receivers.