N. Durge, K. Parida
{"title":"尼莫地平片液相法处方及评价","authors":"N. Durge, K. Parida","doi":"10.31142/IJTSRD23863","DOIUrl":null,"url":null,"abstract":"Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Liquisolid technique is novel concept of the drug delivery via the oral route. This technique is applied to poorly water soluble , water insoluble or lipophilic drugs. According to the new formulation method of liquisolid compact, liquid medication such as solution or suspensions of water insoluble drug in suitable nonvolatile solvent can be converted into acceptably flowing and compressible powders by blending with selected powder excipients. The present work endeavour is directed towards the development of liquisolid compact for production of immediate release tablet of water insoluble Nimodipine. Liquisolid compacts were prepared by using polyethylene glycol 300 as the liquid vehicle or non volatile solvent. Crospovidone was used as a superdisintegrating agent and PVP K30 as a binder. Microcrystalline cellulose was used as a absorbing carrier and silicone dioxide as adsorbing coating material. The prepared liquisolid system were evaluated for their micromeretic properties and possible drug-excipients interaction . The FTIR spectra study ruled out any interaction between the drug and excipients in preparation of Nimodipine liquisolid compact. The in-vitro dissolution study confirmed enhance drug release from liquisolid compacts by using USP type I basket in 0.5 % SLS in water. The selected optimal formula released 93.86 % of its content in 30 min which is showing immediate release. The results showed that use of superdisintegrants had remarkable impact on the release rate of Nimodipine from Liquisolid compact, enhancing the release rate of the drug from liquisolid compact.","PeriodicalId":14446,"journal":{"name":"International Journal of Trend in Scientific Research and Development","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and Evaluation of Nimodipine Tablet by Liquisolid Technique\",\"authors\":\"N. Durge, K. Parida\",\"doi\":\"10.31142/IJTSRD23863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/ by/4.0) ABSTRACT Liquisolid technique is novel concept of the drug delivery via the oral route. This technique is applied to poorly water soluble , water insoluble or lipophilic drugs. According to the new formulation method of liquisolid compact, liquid medication such as solution or suspensions of water insoluble drug in suitable nonvolatile solvent can be converted into acceptably flowing and compressible powders by blending with selected powder excipients. The present work endeavour is directed towards the development of liquisolid compact for production of immediate release tablet of water insoluble Nimodipine. Liquisolid compacts were prepared by using polyethylene glycol 300 as the liquid vehicle or non volatile solvent. Crospovidone was used as a superdisintegrating agent and PVP K30 as a binder. Microcrystalline cellulose was used as a absorbing carrier and silicone dioxide as adsorbing coating material. The prepared liquisolid system were evaluated for their micromeretic properties and possible drug-excipients interaction . The FTIR spectra study ruled out any interaction between the drug and excipients in preparation of Nimodipine liquisolid compact. The in-vitro dissolution study confirmed enhance drug release from liquisolid compacts by using USP type I basket in 0.5 % SLS in water. The selected optimal formula released 93.86 % of its content in 30 min which is showing immediate release. The results showed that use of superdisintegrants had remarkable impact on the release rate of Nimodipine from Liquisolid compact, enhancing the release rate of the drug from liquisolid compact.\",\"PeriodicalId\":14446,\"journal\":{\"name\":\"International Journal of Trend in Scientific Research and Development\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Trend in Scientific Research and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31142/IJTSRD23863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Trend in Scientific Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31142/IJTSRD23863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0