支持向量机的多面二次类核函数

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gurkan Ozturk, Emre Çimen
{"title":"支持向量机的多面二次类核函数","authors":"Gurkan Ozturk, Emre Çimen","doi":"10.3906/ELK-1806-45","DOIUrl":null,"url":null,"abstract":"In this study, we propose a new approach that can be used as a kernel-like function for support vector machines (SVMs) in order to get nonlinear classification surfaces. We combined polyhedral conic functions (PCFs) with the SVM method. To get nonlinear classification surfaces, kernel functions are used with SVMs. However, the parameter selection of the kernel function affects the classification accuracy. Generally, in order to get successful classifiers which can predict unknown data accurately, best parameters are explored with the grid search method which is computationally expensive. We solved this problem with the proposed method. There is no need to optimize any parameter in the proposed method. We tested the proposed method on three publicly available datasets. Next, the classification accuracies of the proposed method were compared with the linear, radial basis function (RBF), Pearson universal kernel (PUK), and polynomial kernel SVMs. The results are competitive with those of the other methods.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"70 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Polyhedral conic kernel-like functions for SVMs\",\"authors\":\"Gurkan Ozturk, Emre Çimen\",\"doi\":\"10.3906/ELK-1806-45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a new approach that can be used as a kernel-like function for support vector machines (SVMs) in order to get nonlinear classification surfaces. We combined polyhedral conic functions (PCFs) with the SVM method. To get nonlinear classification surfaces, kernel functions are used with SVMs. However, the parameter selection of the kernel function affects the classification accuracy. Generally, in order to get successful classifiers which can predict unknown data accurately, best parameters are explored with the grid search method which is computationally expensive. We solved this problem with the proposed method. There is no need to optimize any parameter in the proposed method. We tested the proposed method on three publicly available datasets. Next, the classification accuracies of the proposed method were compared with the linear, radial basis function (RBF), Pearson universal kernel (PUK), and polynomial kernel SVMs. The results are competitive with those of the other methods.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3906/ELK-1806-45\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1806-45","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

摘要

在这项研究中,我们提出了一种新的方法,可以用作支持向量机(svm)的类核函数,以获得非线性分类表面。我们将多面体二次函数(PCFs)与支持向量机方法相结合。为了得到非线性分类曲面,将核函数与支持向量机结合使用。然而,核函数的参数选择会影响分类精度。为了获得能够准确预测未知数据的分类器,通常采用网格搜索方法寻找最优参数,这一方法的计算量很大。我们用提出的方法解决了这个问题。该方法不需要对任何参数进行优化。我们在三个公开可用的数据集上测试了提出的方法。然后,将该方法与线性、径向基函数(RBF)、Pearson通用核(PUK)和多项式核支持向量机进行分类精度比较。结果与其他方法相比具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyhedral conic kernel-like functions for SVMs
In this study, we propose a new approach that can be used as a kernel-like function for support vector machines (SVMs) in order to get nonlinear classification surfaces. We combined polyhedral conic functions (PCFs) with the SVM method. To get nonlinear classification surfaces, kernel functions are used with SVMs. However, the parameter selection of the kernel function affects the classification accuracy. Generally, in order to get successful classifiers which can predict unknown data accurately, best parameters are explored with the grid search method which is computationally expensive. We solved this problem with the proposed method. There is no need to optimize any parameter in the proposed method. We tested the proposed method on three publicly available datasets. Next, the classification accuracies of the proposed method were compared with the linear, radial basis function (RBF), Pearson universal kernel (PUK), and polynomial kernel SVMs. The results are competitive with those of the other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Electrical Engineering and Computer Sciences
Turkish Journal of Electrical Engineering and Computer Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
2.90
自引率
9.10%
发文量
95
审稿时长
6.9 months
期刊介绍: The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信