Eduardo Moreno, James W Lightfoot, Maša Lenuzzi, Ralf J Sommer
{"title":"纤毛是发育可塑性的驱动力,也是捕食线虫有效探测猎物的关键。","authors":"Eduardo Moreno, James W Lightfoot, Maša Lenuzzi, Ralf J Sommer","doi":"10.1098/rspb.2019.1089","DOIUrl":null,"url":null,"abstract":"<p><p>Cilia are complex organelles involved in a broad array of functions in eukaryotic organisms. Nematodes employ cilia for environmental sensing, which shapes developmental decisions and influences morphologically plastic traits and adaptive behaviours. Here, we assess the role of cilia in the nematode <i>Pristionchus pacificus,</i> and determine their importance in regulating the developmentally plastic mouth-form decision in addition to predatory feeding and self-recognition behaviours, all of which are not present in <i>Caenorhabditis elegans</i>. An analysis of a multitude of cilia-related mutants including representatives of the six protein subcomplexes required in intraflagellar transport (IFT) plus the regulatory factor X transcription factor <i>daf-19</i> revealed that cilia are essential for processing the external cues influencing the mouth-form decision and for the efficient detection of prey. Surprisingly, we observed that loss-of-function mutations in the different IFT components resulted in contrasting mouth-form phenotypes and different degrees of predation deficiencies. This observation supports the idea that perturbing different IFT subcomplexes has different effects on signalling downstream of the cilium. Finally, self-recognition was maintained in the cilia deficient mutants tested, indicating that the mechanisms triggering self-recognition in <i>P. pacificus</i> may not require the presence of fully functional cilia.</p>","PeriodicalId":45371,"journal":{"name":"Journal of Forensic Radiology and Imaging","volume":"2 1","pages":"20191089"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790756/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cilia drive developmental plasticity and are essential for efficient prey detection in predatory nematodes.\",\"authors\":\"Eduardo Moreno, James W Lightfoot, Maša Lenuzzi, Ralf J Sommer\",\"doi\":\"10.1098/rspb.2019.1089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cilia are complex organelles involved in a broad array of functions in eukaryotic organisms. Nematodes employ cilia for environmental sensing, which shapes developmental decisions and influences morphologically plastic traits and adaptive behaviours. Here, we assess the role of cilia in the nematode <i>Pristionchus pacificus,</i> and determine their importance in regulating the developmentally plastic mouth-form decision in addition to predatory feeding and self-recognition behaviours, all of which are not present in <i>Caenorhabditis elegans</i>. An analysis of a multitude of cilia-related mutants including representatives of the six protein subcomplexes required in intraflagellar transport (IFT) plus the regulatory factor X transcription factor <i>daf-19</i> revealed that cilia are essential for processing the external cues influencing the mouth-form decision and for the efficient detection of prey. Surprisingly, we observed that loss-of-function mutations in the different IFT components resulted in contrasting mouth-form phenotypes and different degrees of predation deficiencies. This observation supports the idea that perturbing different IFT subcomplexes has different effects on signalling downstream of the cilium. Finally, self-recognition was maintained in the cilia deficient mutants tested, indicating that the mechanisms triggering self-recognition in <i>P. pacificus</i> may not require the presence of fully functional cilia.</p>\",\"PeriodicalId\":45371,\"journal\":{\"name\":\"Journal of Forensic Radiology and Imaging\",\"volume\":\"2 1\",\"pages\":\"20191089\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790756/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forensic Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2019.1089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forensic Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.2019.1089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
纤毛是一种复杂的细胞器,在真核生物体内发挥着广泛的功能。线虫利用纤毛感知环境,从而做出发育决定并影响形态可塑性特征和适应行为。在这里,我们评估了纤毛在太平洋栉水母线虫(Pristionchus pacificus)中的作用,并确定了纤毛在调节具有发育可塑性的口形决定以及捕食和自我识别行为方面的重要性,所有这些行为在草履虫中都不存在。我们分析了大量与纤毛相关的突变体,其中包括鞘内运输(IFT)所需的六种蛋白质亚复合体的代表以及调节因子 X 转录因子 daf-19,结果发现,纤毛对于处理影响口型决定的外部线索以及有效探测猎物至关重要。令人惊讶的是,我们观察到 IFT 不同组分的功能缺失突变会导致截然不同的口型表型和不同程度的捕食缺陷。这一观察结果支持了这样一种观点,即干扰不同的 IFT 亚复合物会对纤毛下游的信号传导产生不同的影响。最后,在测试的纤毛缺失突变体中,自我识别能力得以维持,这表明引发太平洋豚鼠自我识别的机制可能并不需要存在功能完备的纤毛。
Cilia drive developmental plasticity and are essential for efficient prey detection in predatory nematodes.
Cilia are complex organelles involved in a broad array of functions in eukaryotic organisms. Nematodes employ cilia for environmental sensing, which shapes developmental decisions and influences morphologically plastic traits and adaptive behaviours. Here, we assess the role of cilia in the nematode Pristionchus pacificus, and determine their importance in regulating the developmentally plastic mouth-form decision in addition to predatory feeding and self-recognition behaviours, all of which are not present in Caenorhabditis elegans. An analysis of a multitude of cilia-related mutants including representatives of the six protein subcomplexes required in intraflagellar transport (IFT) plus the regulatory factor X transcription factor daf-19 revealed that cilia are essential for processing the external cues influencing the mouth-form decision and for the efficient detection of prey. Surprisingly, we observed that loss-of-function mutations in the different IFT components resulted in contrasting mouth-form phenotypes and different degrees of predation deficiencies. This observation supports the idea that perturbing different IFT subcomplexes has different effects on signalling downstream of the cilium. Finally, self-recognition was maintained in the cilia deficient mutants tested, indicating that the mechanisms triggering self-recognition in P. pacificus may not require the presence of fully functional cilia.