求解一阶常微分方程的龙格-库塔型四步隐式块法

H. M. Radzi, Z. Majid, F. Ismail, M. Suleiman
{"title":"求解一阶常微分方程的龙格-库塔型四步隐式块法","authors":"H. M. Radzi, Z. Majid, F. Ismail, M. Suleiman","doi":"10.1109/ICMSAO.2011.5775471","DOIUrl":null,"url":null,"abstract":"In this paper, a four step implicit block method for solving first order ordinary differential equations (ODEs) is proposed. The method approximates the solutions of initial value problems at four-point mesh simultaneously using variable step size. This four step implicit method is of the multistep type but it is implemented as the Runge-Kutta type. The stability regions of the method are also studied. Numerical results are presented to show the efficiency of the proposed block method.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":"135 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Four step implicit block method of Runge-Kutta type for solving first order ordinary differential equations\",\"authors\":\"H. M. Radzi, Z. Majid, F. Ismail, M. Suleiman\",\"doi\":\"10.1109/ICMSAO.2011.5775471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a four step implicit block method for solving first order ordinary differential equations (ODEs) is proposed. The method approximates the solutions of initial value problems at four-point mesh simultaneously using variable step size. This four step implicit method is of the multistep type but it is implemented as the Runge-Kutta type. The stability regions of the method are also studied. Numerical results are presented to show the efficiency of the proposed block method.\",\"PeriodicalId\":6383,\"journal\":{\"name\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"volume\":\"135 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSAO.2011.5775471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了求解一阶常微分方程的四步隐式块法。该方法采用变步长方法同时逼近四点网格初值问题的解。这个四步隐式方法是多步类型,但它是作为龙格-库塔类型实现的。研究了该方法的稳定区域。数值结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four step implicit block method of Runge-Kutta type for solving first order ordinary differential equations
In this paper, a four step implicit block method for solving first order ordinary differential equations (ODEs) is proposed. The method approximates the solutions of initial value problems at four-point mesh simultaneously using variable step size. This four step implicit method is of the multistep type but it is implemented as the Runge-Kutta type. The stability regions of the method are also studied. Numerical results are presented to show the efficiency of the proposed block method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信