神经形态应用Hf0.5Zr0.5O2/Si效应场效应油藏计算的提出与实验论证

E. Nako, K. Toprasertpong, R. Nakane, Z. Wang, Y. Miyatake, M. Takenaka, S. Takagi
{"title":"神经形态应用Hf0.5Zr0.5O2/Si效应场效应油藏计算的提出与实验论证","authors":"E. Nako, K. Toprasertpong, R. Nakane, Z. Wang, Y. Miyatake, M. Takenaka, S. Takagi","doi":"10.1109/VLSITechnology18217.2020.9265110","DOIUrl":null,"url":null,"abstract":"We propose a new AI calculation scheme by reservoir computing utilizing the memory effect and nonlinearity of ferroelectric gate MOSFETs (FeFETs) for neuromorphic applications. The task operations of time-series data are experimentally demonstrated by taking time responses of the drain current for gate voltage input as the virtual nodes. A high ability to classify input data is experimentally verified.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"397 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Proposal and Experimental Demonstration of Reservoir Computing using Hf0.5Zr0.5O2/Si FeFETs for Neuromorphic Applications\",\"authors\":\"E. Nako, K. Toprasertpong, R. Nakane, Z. Wang, Y. Miyatake, M. Takenaka, S. Takagi\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new AI calculation scheme by reservoir computing utilizing the memory effect and nonlinearity of ferroelectric gate MOSFETs (FeFETs) for neuromorphic applications. The task operations of time-series data are experimentally demonstrated by taking time responses of the drain current for gate voltage input as the virtual nodes. A high ability to classify input data is experimentally verified.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"397 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了一种新的人工智能计算方案,利用铁电栅mosfet (fefet)的记忆效应和非线性,用于神经形态应用。以栅极电压输入漏极电流的时间响应为虚拟节点,实验验证了时序数据的任务运算。实验验证了对输入数据的高分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal and Experimental Demonstration of Reservoir Computing using Hf0.5Zr0.5O2/Si FeFETs for Neuromorphic Applications
We propose a new AI calculation scheme by reservoir computing utilizing the memory effect and nonlinearity of ferroelectric gate MOSFETs (FeFETs) for neuromorphic applications. The task operations of time-series data are experimentally demonstrated by taking time responses of the drain current for gate voltage input as the virtual nodes. A high ability to classify input data is experimentally verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信