E. Nako, K. Toprasertpong, R. Nakane, Z. Wang, Y. Miyatake, M. Takenaka, S. Takagi
{"title":"神经形态应用Hf0.5Zr0.5O2/Si效应场效应油藏计算的提出与实验论证","authors":"E. Nako, K. Toprasertpong, R. Nakane, Z. Wang, Y. Miyatake, M. Takenaka, S. Takagi","doi":"10.1109/VLSITechnology18217.2020.9265110","DOIUrl":null,"url":null,"abstract":"We propose a new AI calculation scheme by reservoir computing utilizing the memory effect and nonlinearity of ferroelectric gate MOSFETs (FeFETs) for neuromorphic applications. The task operations of time-series data are experimentally demonstrated by taking time responses of the drain current for gate voltage input as the virtual nodes. A high ability to classify input data is experimentally verified.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"397 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Proposal and Experimental Demonstration of Reservoir Computing using Hf0.5Zr0.5O2/Si FeFETs for Neuromorphic Applications\",\"authors\":\"E. Nako, K. Toprasertpong, R. Nakane, Z. Wang, Y. Miyatake, M. Takenaka, S. Takagi\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new AI calculation scheme by reservoir computing utilizing the memory effect and nonlinearity of ferroelectric gate MOSFETs (FeFETs) for neuromorphic applications. The task operations of time-series data are experimentally demonstrated by taking time responses of the drain current for gate voltage input as the virtual nodes. A high ability to classify input data is experimentally verified.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"397 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proposal and Experimental Demonstration of Reservoir Computing using Hf0.5Zr0.5O2/Si FeFETs for Neuromorphic Applications
We propose a new AI calculation scheme by reservoir computing utilizing the memory effect and nonlinearity of ferroelectric gate MOSFETs (FeFETs) for neuromorphic applications. The task operations of time-series data are experimentally demonstrated by taking time responses of the drain current for gate voltage input as the virtual nodes. A high ability to classify input data is experimentally verified.