{"title":"评估全球真菌对人类的威胁。","authors":"Jianping Xu","doi":"10.1002/mlf2.12036","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi are an integral part of the earth's biosphere. They are broadly distributed in all continents and ecosystems and play a diversity of roles. Here, I review our current understanding of fungal threats to humans and describe the major factors that contribute to various threats. Among the 140,000 or so known species out of the estimated six million fungal species on Earth, about 10% directly or indirectly threaten human health and welfare. Major threats include mushroom poisoning, fungal allergies, infections of crop plants, food contamination by mycotoxins, and mycoses in humans. A growing number of factors have been identified to impact various fungal threats, including human demographics, crop distributions, anthropogenic activities, pathogen dispersals, global climate change, and/or the applications of antifungal drugs and agricultural fungicides. However, while models have been developed for analyzing various processes of individual threats and threat managements, current data are primarily descriptive and incomplete, and there are significant obstacles to integration of the diverse factors into accurate quantitative assessments of fungal threats. With increasing technological advances and concerted efforts to track the spatial and temporal data on climate and environmental variables; mycotoxins in the feed and food supply chains; fungal population dynamics in crop fields, human and animal populations, and the environment; human population demographics; and the prevalence and severities of fungal allergies and diseases, our ability to accurately assess fungal threats will improve. Such improvements should help us develop holistic strategies to manage fungal threats in the future.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing global fungal threats to humans.\",\"authors\":\"Jianping Xu\",\"doi\":\"10.1002/mlf2.12036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungi are an integral part of the earth's biosphere. They are broadly distributed in all continents and ecosystems and play a diversity of roles. Here, I review our current understanding of fungal threats to humans and describe the major factors that contribute to various threats. Among the 140,000 or so known species out of the estimated six million fungal species on Earth, about 10% directly or indirectly threaten human health and welfare. Major threats include mushroom poisoning, fungal allergies, infections of crop plants, food contamination by mycotoxins, and mycoses in humans. A growing number of factors have been identified to impact various fungal threats, including human demographics, crop distributions, anthropogenic activities, pathogen dispersals, global climate change, and/or the applications of antifungal drugs and agricultural fungicides. However, while models have been developed for analyzing various processes of individual threats and threat managements, current data are primarily descriptive and incomplete, and there are significant obstacles to integration of the diverse factors into accurate quantitative assessments of fungal threats. With increasing technological advances and concerted efforts to track the spatial and temporal data on climate and environmental variables; mycotoxins in the feed and food supply chains; fungal population dynamics in crop fields, human and animal populations, and the environment; human population demographics; and the prevalence and severities of fungal allergies and diseases, our ability to accurately assess fungal threats will improve. Such improvements should help us develop holistic strategies to manage fungal threats in the future.</p>\",\"PeriodicalId\":94145,\"journal\":{\"name\":\"mLife\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mlf2.12036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Fungi are an integral part of the earth's biosphere. They are broadly distributed in all continents and ecosystems and play a diversity of roles. Here, I review our current understanding of fungal threats to humans and describe the major factors that contribute to various threats. Among the 140,000 or so known species out of the estimated six million fungal species on Earth, about 10% directly or indirectly threaten human health and welfare. Major threats include mushroom poisoning, fungal allergies, infections of crop plants, food contamination by mycotoxins, and mycoses in humans. A growing number of factors have been identified to impact various fungal threats, including human demographics, crop distributions, anthropogenic activities, pathogen dispersals, global climate change, and/or the applications of antifungal drugs and agricultural fungicides. However, while models have been developed for analyzing various processes of individual threats and threat managements, current data are primarily descriptive and incomplete, and there are significant obstacles to integration of the diverse factors into accurate quantitative assessments of fungal threats. With increasing technological advances and concerted efforts to track the spatial and temporal data on climate and environmental variables; mycotoxins in the feed and food supply chains; fungal population dynamics in crop fields, human and animal populations, and the environment; human population demographics; and the prevalence and severities of fungal allergies and diseases, our ability to accurately assess fungal threats will improve. Such improvements should help us develop holistic strategies to manage fungal threats in the future.