{"title":"若干检验对非同分布随机效应模型的适用性","authors":"D. Gaigall","doi":"10.1080/02331888.2023.2193748","DOIUrl":null,"url":null,"abstract":"We consider Kolmogorov–Smirnov and Cramér–von-Mises type tests for testing central symmetry, exchangeability, and independence. In the standard case, the tests are intended for the application to independent and identically distributed data with unknown distribution. The tests are available for multivariate data and bootstrap procedures are suitable to obtain critical values. We discuss the applicability of the tests to random effects models, where the random effects are independent but not necessarily identically distributed and with possibly unknown distributions. Theoretical results show the adequacy of the tests in this situation. The quality of the tests in models with random effects is investigated by simulations. Empirical results obtained confirm the theoretical findings. A real data example illustrates the application.","PeriodicalId":54358,"journal":{"name":"Statistics","volume":"338 1","pages":"300 - 327"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the applicability of several tests to models with not identically distributed random effects\",\"authors\":\"D. Gaigall\",\"doi\":\"10.1080/02331888.2023.2193748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Kolmogorov–Smirnov and Cramér–von-Mises type tests for testing central symmetry, exchangeability, and independence. In the standard case, the tests are intended for the application to independent and identically distributed data with unknown distribution. The tests are available for multivariate data and bootstrap procedures are suitable to obtain critical values. We discuss the applicability of the tests to random effects models, where the random effects are independent but not necessarily identically distributed and with possibly unknown distributions. Theoretical results show the adequacy of the tests in this situation. The quality of the tests in models with random effects is investigated by simulations. Empirical results obtained confirm the theoretical findings. A real data example illustrates the application.\",\"PeriodicalId\":54358,\"journal\":{\"name\":\"Statistics\",\"volume\":\"338 1\",\"pages\":\"300 - 327\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02331888.2023.2193748\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02331888.2023.2193748","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the applicability of several tests to models with not identically distributed random effects
We consider Kolmogorov–Smirnov and Cramér–von-Mises type tests for testing central symmetry, exchangeability, and independence. In the standard case, the tests are intended for the application to independent and identically distributed data with unknown distribution. The tests are available for multivariate data and bootstrap procedures are suitable to obtain critical values. We discuss the applicability of the tests to random effects models, where the random effects are independent but not necessarily identically distributed and with possibly unknown distributions. Theoretical results show the adequacy of the tests in this situation. The quality of the tests in models with random effects is investigated by simulations. Empirical results obtained confirm the theoretical findings. A real data example illustrates the application.
期刊介绍:
Statistics publishes papers developing and analysing new methods for any active field of statistics, motivated by real-life problems. Papers submitted for consideration should provide interesting and novel contributions to statistical theory and its applications with rigorous mathematical results and proofs. Moreover, numerical simulations and application to real data sets can improve the quality of papers, and should be included where appropriate. Statistics does not publish papers which represent mere application of existing procedures to case studies, and papers are required to contain methodological or theoretical innovation. Topics of interest include, for example, nonparametric statistics, time series, analysis of topological or functional data. Furthermore the journal also welcomes submissions in the field of theoretical econometrics and its links to mathematical statistics.