C. Ruiz, D. Jafari, Vignesh Venkata Subramanian, T. Vaneker, Wei Ya, Qiang Huang
{"title":"利用工程信息机器学习提高线材和电弧增材制造的几何精度","authors":"C. Ruiz, D. Jafari, Vignesh Venkata Subramanian, T. Vaneker, Wei Ya, Qiang Huang","doi":"10.1115/msec2022-85325","DOIUrl":null,"url":null,"abstract":"\n Wire and arc additive manufacturing (WAAM) is a promising technology for fast and cost-effective fabrication of large-scale components made of high-value materials for industries such as petroleum and aerospace. By using robotic arc welding and wire filler materials, WAAM can fabricate complex large near-net shape parts with high deposition rates, short lead times and millimeter resolution. However, due to high temperature gradients and residual stresses, current WAAM technologies suffer from high surface roughness and poor shape accuracy. This limits the adoption of these technologies in industry and complicates process control and optimization. Since its conception, considerable research efforts have been made on improving the mechanical and microstructural performance of WAAM components while few studies have investigated their geometric accuracy. In this work, we propose an engineering-informed machine learning (ML) framework for predicting and compensating for the geometric deformation of WAAM fabricated products based on a few sample parts. The proposed ML algorithm efficiently separates geometric shape deviation into deformation and surface roughness. Then, the predicted shape deformation of a new product is minimized by applying optimal geometric compensation to the product design. Experimental validation on cylindrical shapes showed that the proposed methodology can effectively reduce product shape deviation, which facilitates the widespread adoption of WAAM.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Geometric Accuracy in Wire and Arc Additive Manufacturing With Engineering-Informed Machine Learning\",\"authors\":\"C. Ruiz, D. Jafari, Vignesh Venkata Subramanian, T. Vaneker, Wei Ya, Qiang Huang\",\"doi\":\"10.1115/msec2022-85325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wire and arc additive manufacturing (WAAM) is a promising technology for fast and cost-effective fabrication of large-scale components made of high-value materials for industries such as petroleum and aerospace. By using robotic arc welding and wire filler materials, WAAM can fabricate complex large near-net shape parts with high deposition rates, short lead times and millimeter resolution. However, due to high temperature gradients and residual stresses, current WAAM technologies suffer from high surface roughness and poor shape accuracy. This limits the adoption of these technologies in industry and complicates process control and optimization. Since its conception, considerable research efforts have been made on improving the mechanical and microstructural performance of WAAM components while few studies have investigated their geometric accuracy. In this work, we propose an engineering-informed machine learning (ML) framework for predicting and compensating for the geometric deformation of WAAM fabricated products based on a few sample parts. The proposed ML algorithm efficiently separates geometric shape deviation into deformation and surface roughness. Then, the predicted shape deformation of a new product is minimized by applying optimal geometric compensation to the product design. Experimental validation on cylindrical shapes showed that the proposed methodology can effectively reduce product shape deviation, which facilitates the widespread adoption of WAAM.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Improving Geometric Accuracy in Wire and Arc Additive Manufacturing With Engineering-Informed Machine Learning
Wire and arc additive manufacturing (WAAM) is a promising technology for fast and cost-effective fabrication of large-scale components made of high-value materials for industries such as petroleum and aerospace. By using robotic arc welding and wire filler materials, WAAM can fabricate complex large near-net shape parts with high deposition rates, short lead times and millimeter resolution. However, due to high temperature gradients and residual stresses, current WAAM technologies suffer from high surface roughness and poor shape accuracy. This limits the adoption of these technologies in industry and complicates process control and optimization. Since its conception, considerable research efforts have been made on improving the mechanical and microstructural performance of WAAM components while few studies have investigated their geometric accuracy. In this work, we propose an engineering-informed machine learning (ML) framework for predicting and compensating for the geometric deformation of WAAM fabricated products based on a few sample parts. The proposed ML algorithm efficiently separates geometric shape deviation into deformation and surface roughness. Then, the predicted shape deformation of a new product is minimized by applying optimal geometric compensation to the product design. Experimental validation on cylindrical shapes showed that the proposed methodology can effectively reduce product shape deviation, which facilitates the widespread adoption of WAAM.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.