社交媒体情感分析的在线机器学习方法

J. Alwidian, Tariq N. Khasawneh, Mahmoud Alsahlee, Ali A. Safia
{"title":"社交媒体情感分析的在线机器学习方法","authors":"J. Alwidian, Tariq N. Khasawneh, Mahmoud Alsahlee, Ali A. Safia","doi":"10.5539/mas.v16n4p29","DOIUrl":null,"url":null,"abstract":"The online learning, is one that continuously adapts to arriving data, and gets updated incrementally instance by instance. In this paper, we compare the performance of different online machine learning algorithms for the task of sentiment analysis on challenging text datasets. We assess the models using a wide range of metrics, such as microF1, macroF1, accuracy, and running time. Our experiments have revealed that these online models provide a viable alternative to traditional offline machine learning in sentiment analysis, in fraction of the time.","PeriodicalId":18713,"journal":{"name":"Modern Applied Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Online Machine Learning Approach to Sentiment Analysis in Social Media\",\"authors\":\"J. Alwidian, Tariq N. Khasawneh, Mahmoud Alsahlee, Ali A. Safia\",\"doi\":\"10.5539/mas.v16n4p29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The online learning, is one that continuously adapts to arriving data, and gets updated incrementally instance by instance. In this paper, we compare the performance of different online machine learning algorithms for the task of sentiment analysis on challenging text datasets. We assess the models using a wide range of metrics, such as microF1, macroF1, accuracy, and running time. Our experiments have revealed that these online models provide a viable alternative to traditional offline machine learning in sentiment analysis, in fraction of the time.\",\"PeriodicalId\":18713,\"journal\":{\"name\":\"Modern Applied Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/mas.v16n4p29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/mas.v16n4p29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线学习是一种不断适应到达的数据,并逐例增量更新的学习。在本文中,我们比较了不同的在线机器学习算法在具有挑战性的文本数据集上的情感分析任务的性能。我们使用广泛的度量来评估模型,例如microF1、macroF1、准确性和运行时间。我们的实验表明,这些在线模型在情感分析方面为传统的离线机器学习提供了一种可行的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Online Machine Learning Approach to Sentiment Analysis in Social Media
The online learning, is one that continuously adapts to arriving data, and gets updated incrementally instance by instance. In this paper, we compare the performance of different online machine learning algorithms for the task of sentiment analysis on challenging text datasets. We assess the models using a wide range of metrics, such as microF1, macroF1, accuracy, and running time. Our experiments have revealed that these online models provide a viable alternative to traditional offline machine learning in sentiment analysis, in fraction of the time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信