Joseph Smith, Nicholas N. DePhillipo, Shannon L. David, Katelyn Nicolay, Sofia Wentz, Abby Steckler, Connor Westberg
{"title":"3d打印短臂铸件:与传统防水玻璃纤维铸件相比,可靠性、有效性、可行性","authors":"Joseph Smith, Nicholas N. DePhillipo, Shannon L. David, Katelyn Nicolay, Sofia Wentz, Abby Steckler, Connor Westberg","doi":"10.2217/3dp-2022-0015","DOIUrl":null,"url":null,"abstract":"Aim: To evaluate the reliability, validity, and feasibility of 3D-printed short arm casts (SACs) versus conventional casts. Methods: Three raters of varying experience applied two conventional and two 3D-printed casts to a participant's dominant wrist to evaluate reliability. Each cast was worn for 24 hours and removed the following day after data collection. Results & conclusion: ICCs demonstrated ‘excellent’ intra-rater reliability for clinical effectiveness and patient satisfaction. There were no significant differences between fiberglass and 3D-printed SACs. The 3D-printed SAC group had significantly higher wrist function compared with the fiberglass SAC group. Discussion: This pilot case study demonstrates that 3D-printed short arm casts may be a valid immobilization technique of the wrist compared with conventional waterproof fiberglass casting.","PeriodicalId":73578,"journal":{"name":"Journal of 3D printing in medicine","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-printed short arm casts: reliability, validity, feasibility compared with conventional waterproof fiberglass casts\",\"authors\":\"Joseph Smith, Nicholas N. DePhillipo, Shannon L. David, Katelyn Nicolay, Sofia Wentz, Abby Steckler, Connor Westberg\",\"doi\":\"10.2217/3dp-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: To evaluate the reliability, validity, and feasibility of 3D-printed short arm casts (SACs) versus conventional casts. Methods: Three raters of varying experience applied two conventional and two 3D-printed casts to a participant's dominant wrist to evaluate reliability. Each cast was worn for 24 hours and removed the following day after data collection. Results & conclusion: ICCs demonstrated ‘excellent’ intra-rater reliability for clinical effectiveness and patient satisfaction. There were no significant differences between fiberglass and 3D-printed SACs. The 3D-printed SAC group had significantly higher wrist function compared with the fiberglass SAC group. Discussion: This pilot case study demonstrates that 3D-printed short arm casts may be a valid immobilization technique of the wrist compared with conventional waterproof fiberglass casting.\",\"PeriodicalId\":73578,\"journal\":{\"name\":\"Journal of 3D printing in medicine\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of 3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/3dp-2022-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of 3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/3dp-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D-printed short arm casts: reliability, validity, feasibility compared with conventional waterproof fiberglass casts
Aim: To evaluate the reliability, validity, and feasibility of 3D-printed short arm casts (SACs) versus conventional casts. Methods: Three raters of varying experience applied two conventional and two 3D-printed casts to a participant's dominant wrist to evaluate reliability. Each cast was worn for 24 hours and removed the following day after data collection. Results & conclusion: ICCs demonstrated ‘excellent’ intra-rater reliability for clinical effectiveness and patient satisfaction. There were no significant differences between fiberglass and 3D-printed SACs. The 3D-printed SAC group had significantly higher wrist function compared with the fiberglass SAC group. Discussion: This pilot case study demonstrates that 3D-printed short arm casts may be a valid immobilization technique of the wrist compared with conventional waterproof fiberglass casting.