{"title":"面膜使用反革命网络对使用面膜的检测分类","authors":"Nalda Kresimo Negoro, Ema Utami, Ainul Yaqin","doi":"10.29100/jipi.v8i2.3748","DOIUrl":null,"url":null,"abstract":"Berhubungan dengan era revolusi industri 5.0 kita perlu bersyukur semua pekerjaan menjadi dimudahkan dengan terdigitalisasi. Berbagai pekerjaan dapat diselesaikan jauh lebih mudah, cepat dan secara otomatis. Konsep era industri 5.0 memiliki fokus pendayagunaan aspek dari manusia, data dan teknologi berbasis modern. Manusia dan sistem saling terhubung dan mendapatkan hasil maksimal dengan bantuan AI. Konsep ini memberikan dampak positif untuk menghadapi perubahan besar pada transformasi digital. Perkembangan pesat dari transformasi digital saat ini ada pada pendeteksian objek menggunakan machine learning. Deteksi objek adalah teknik dari computer vision dalam pembacaan pengenalan objek pada gambar ataupun video. Pada penelitian ini diterapkan klasifikasi deteksi objek dengan algoritma Convolutional Neural Network (CNN) menggunakan arsitektur VGG16Net dengan mengklasifikasikan wajah bermasker dan tidak bermasker. Dataset yang digunakan untuk proses training diperoleh dari kaggle berjumlah 3.725 menggunakan masker, 3.828 tidak menggunakan masker dan dataset untuk proses testing menggunakan dataset personal berjumlah 16 dataset. Evaluasi jaringan pelatihan model menggunakan confusion matrix sedangkan tahap pengujian menggunakan SSD ResNet10. Hasil evaluasi dari rancangan implementasi pelatihan model didapatkan nilai akurasi 0,992%, presisi 1.000, dan recall 0,984. Kemudian hasil pengujian testing mendapatkan nilai tertinggi dengan akurasi 100%.","PeriodicalId":32696,"journal":{"name":"JIPI Jurnal IPA dan Pembelajaran IPA","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KLASIFIKASI DETEKSI PENGGUNAAN MASKER MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK\",\"authors\":\"Nalda Kresimo Negoro, Ema Utami, Ainul Yaqin\",\"doi\":\"10.29100/jipi.v8i2.3748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Berhubungan dengan era revolusi industri 5.0 kita perlu bersyukur semua pekerjaan menjadi dimudahkan dengan terdigitalisasi. Berbagai pekerjaan dapat diselesaikan jauh lebih mudah, cepat dan secara otomatis. Konsep era industri 5.0 memiliki fokus pendayagunaan aspek dari manusia, data dan teknologi berbasis modern. Manusia dan sistem saling terhubung dan mendapatkan hasil maksimal dengan bantuan AI. Konsep ini memberikan dampak positif untuk menghadapi perubahan besar pada transformasi digital. Perkembangan pesat dari transformasi digital saat ini ada pada pendeteksian objek menggunakan machine learning. Deteksi objek adalah teknik dari computer vision dalam pembacaan pengenalan objek pada gambar ataupun video. Pada penelitian ini diterapkan klasifikasi deteksi objek dengan algoritma Convolutional Neural Network (CNN) menggunakan arsitektur VGG16Net dengan mengklasifikasikan wajah bermasker dan tidak bermasker. Dataset yang digunakan untuk proses training diperoleh dari kaggle berjumlah 3.725 menggunakan masker, 3.828 tidak menggunakan masker dan dataset untuk proses testing menggunakan dataset personal berjumlah 16 dataset. Evaluasi jaringan pelatihan model menggunakan confusion matrix sedangkan tahap pengujian menggunakan SSD ResNet10. Hasil evaluasi dari rancangan implementasi pelatihan model didapatkan nilai akurasi 0,992%, presisi 1.000, dan recall 0,984. Kemudian hasil pengujian testing mendapatkan nilai tertinggi dengan akurasi 100%.\",\"PeriodicalId\":32696,\"journal\":{\"name\":\"JIPI Jurnal IPA dan Pembelajaran IPA\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIPI Jurnal IPA dan Pembelajaran IPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29100/jipi.v8i2.3748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIPI Jurnal IPA dan Pembelajaran IPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29100/jipi.v8i2.3748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
KLASIFIKASI DETEKSI PENGGUNAAN MASKER MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK
Berhubungan dengan era revolusi industri 5.0 kita perlu bersyukur semua pekerjaan menjadi dimudahkan dengan terdigitalisasi. Berbagai pekerjaan dapat diselesaikan jauh lebih mudah, cepat dan secara otomatis. Konsep era industri 5.0 memiliki fokus pendayagunaan aspek dari manusia, data dan teknologi berbasis modern. Manusia dan sistem saling terhubung dan mendapatkan hasil maksimal dengan bantuan AI. Konsep ini memberikan dampak positif untuk menghadapi perubahan besar pada transformasi digital. Perkembangan pesat dari transformasi digital saat ini ada pada pendeteksian objek menggunakan machine learning. Deteksi objek adalah teknik dari computer vision dalam pembacaan pengenalan objek pada gambar ataupun video. Pada penelitian ini diterapkan klasifikasi deteksi objek dengan algoritma Convolutional Neural Network (CNN) menggunakan arsitektur VGG16Net dengan mengklasifikasikan wajah bermasker dan tidak bermasker. Dataset yang digunakan untuk proses training diperoleh dari kaggle berjumlah 3.725 menggunakan masker, 3.828 tidak menggunakan masker dan dataset untuk proses testing menggunakan dataset personal berjumlah 16 dataset. Evaluasi jaringan pelatihan model menggunakan confusion matrix sedangkan tahap pengujian menggunakan SSD ResNet10. Hasil evaluasi dari rancangan implementasi pelatihan model didapatkan nilai akurasi 0,992%, presisi 1.000, dan recall 0,984. Kemudian hasil pengujian testing mendapatkan nilai tertinggi dengan akurasi 100%.