基于树形树密度通量傅里叶系数的树形树分类

D. Efrosinin, I. Kochetkova, N. Stepanova, Alexey Yarovslavtsev, K. Samouylov, R. Valentini
{"title":"基于树形树密度通量傅里叶系数的树形树分类","authors":"D. Efrosinin, I. Kochetkova, N. Stepanova, Alexey Yarovslavtsev, K. Samouylov, R. Valentini","doi":"10.33039/AMI.2021.03.002","DOIUrl":null,"url":null,"abstract":"In this paper we study the possibility to use the artificial neural networks for trees classification based on real and approximated values of the sap flow density flux describing water transport in trees. The data sets were generated by means of a new tree monitoring system TreeTalker. The Fourier series-based model is used for fitting the data sets with periodic patterns. The multivariate regression model defines the functional dependencies between sap flow density and temperature time series. The paper shows that Fourier coefficients can be successfully used as elements of the feature vectors required to solve different classification problems. Here we train multilayer neural networks to classify the trees according to different types of classes. The quality of the developed model for prediction and classification is verified by numerous numerical examples.","PeriodicalId":8040,"journal":{"name":"Applied Medical Informaticvs","volume":"21 1","pages":"109-123"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Trees classification based on Fourier coefficients of the sapflow density flux\",\"authors\":\"D. Efrosinin, I. Kochetkova, N. Stepanova, Alexey Yarovslavtsev, K. Samouylov, R. Valentini\",\"doi\":\"10.33039/AMI.2021.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the possibility to use the artificial neural networks for trees classification based on real and approximated values of the sap flow density flux describing water transport in trees. The data sets were generated by means of a new tree monitoring system TreeTalker. The Fourier series-based model is used for fitting the data sets with periodic patterns. The multivariate regression model defines the functional dependencies between sap flow density and temperature time series. The paper shows that Fourier coefficients can be successfully used as elements of the feature vectors required to solve different classification problems. Here we train multilayer neural networks to classify the trees according to different types of classes. The quality of the developed model for prediction and classification is verified by numerous numerical examples.\",\"PeriodicalId\":8040,\"journal\":{\"name\":\"Applied Medical Informaticvs\",\"volume\":\"21 1\",\"pages\":\"109-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Medical Informaticvs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/AMI.2021.03.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Medical Informaticvs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/AMI.2021.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文基于树液流密度通量的实值和近似值,研究了利用人工神经网络进行树木分类的可能性。数据集是通过一种新的树木监测系统TreeTalker生成的。采用基于傅立叶级数的模型拟合具有周期模式的数据集。多元回归模型定义了液流密度与温度时间序列之间的函数依赖关系。本文表明,傅里叶系数可以成功地用作解决不同分类问题所需的特征向量的元素。在这里,我们训练多层神经网络根据不同类型的类对树进行分类。通过大量的数值算例验证了所建立的预测和分类模型的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trees classification based on Fourier coefficients of the sapflow density flux
In this paper we study the possibility to use the artificial neural networks for trees classification based on real and approximated values of the sap flow density flux describing water transport in trees. The data sets were generated by means of a new tree monitoring system TreeTalker. The Fourier series-based model is used for fitting the data sets with periodic patterns. The multivariate regression model defines the functional dependencies between sap flow density and temperature time series. The paper shows that Fourier coefficients can be successfully used as elements of the feature vectors required to solve different classification problems. Here we train multilayer neural networks to classify the trees according to different types of classes. The quality of the developed model for prediction and classification is verified by numerous numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信