{"title":"波浪建模的两层方法","authors":"P. Lynett, P. Liu","doi":"10.1098/rspa.2004.1305","DOIUrl":null,"url":null,"abstract":"A set of model equations for water–wave propagation is derived by piecewise integration of the primitive equations of motion through two arbitrary layers. Within each layer, an independent velocity profile is derived. With two separate velocity profiles, matched at the interface of the two layers, the resulting set of equations has three free parameters, allowing for an optimization with known analytical properties of water waves. The optimized model equations show good linear wave characteristics up to kh ≈ 6, while the second–order nonlinear behaviour is captured to kh ≈ 6 as well. A numerical algorithm for solving the model equations is developed and tested against one– and two–horizontal–dimension cases. Agreement with laboratory data is excellent.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"208","resultStr":"{\"title\":\"A two-layer approach to wave modelling\",\"authors\":\"P. Lynett, P. Liu\",\"doi\":\"10.1098/rspa.2004.1305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of model equations for water–wave propagation is derived by piecewise integration of the primitive equations of motion through two arbitrary layers. Within each layer, an independent velocity profile is derived. With two separate velocity profiles, matched at the interface of the two layers, the resulting set of equations has three free parameters, allowing for an optimization with known analytical properties of water waves. The optimized model equations show good linear wave characteristics up to kh ≈ 6, while the second–order nonlinear behaviour is captured to kh ≈ 6 as well. A numerical algorithm for solving the model equations is developed and tested against one– and two–horizontal–dimension cases. Agreement with laboratory data is excellent.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"208\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A set of model equations for water–wave propagation is derived by piecewise integration of the primitive equations of motion through two arbitrary layers. Within each layer, an independent velocity profile is derived. With two separate velocity profiles, matched at the interface of the two layers, the resulting set of equations has three free parameters, allowing for an optimization with known analytical properties of water waves. The optimized model equations show good linear wave characteristics up to kh ≈ 6, while the second–order nonlinear behaviour is captured to kh ≈ 6 as well. A numerical algorithm for solving the model equations is developed and tested against one– and two–horizontal–dimension cases. Agreement with laboratory data is excellent.
期刊介绍:
Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.