波浪建模的两层方法

P. Lynett, P. Liu
{"title":"波浪建模的两层方法","authors":"P. Lynett, P. Liu","doi":"10.1098/rspa.2004.1305","DOIUrl":null,"url":null,"abstract":"A set of model equations for water–wave propagation is derived by piecewise integration of the primitive equations of motion through two arbitrary layers. Within each layer, an independent velocity profile is derived. With two separate velocity profiles, matched at the interface of the two layers, the resulting set of equations has three free parameters, allowing for an optimization with known analytical properties of water waves. The optimized model equations show good linear wave characteristics up to kh ≈ 6, while the second–order nonlinear behaviour is captured to kh ≈ 6 as well. A numerical algorithm for solving the model equations is developed and tested against one– and two–horizontal–dimension cases. Agreement with laboratory data is excellent.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"208","resultStr":"{\"title\":\"A two-layer approach to wave modelling\",\"authors\":\"P. Lynett, P. Liu\",\"doi\":\"10.1098/rspa.2004.1305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of model equations for water–wave propagation is derived by piecewise integration of the primitive equations of motion through two arbitrary layers. Within each layer, an independent velocity profile is derived. With two separate velocity profiles, matched at the interface of the two layers, the resulting set of equations has three free parameters, allowing for an optimization with known analytical properties of water waves. The optimized model equations show good linear wave characteristics up to kh ≈ 6, while the second–order nonlinear behaviour is captured to kh ≈ 6 as well. A numerical algorithm for solving the model equations is developed and tested against one– and two–horizontal–dimension cases. Agreement with laboratory data is excellent.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"208\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 208

摘要

通过对任意两层的原始运动方程进行分段积分,导出了一组水波传播模型方程。在每一层中,推导出一个独立的速度剖面。两个独立的速度剖面,在两层的界面处匹配,得到的方程集有三个自由参数,允许对已知的水波分析特性进行优化。优化后的模型方程在kh≈6范围内表现出良好的线性波动特性,同时在kh≈6范围内也表现出二阶非线性特性。提出了一种求解模型方程的数值算法,并对一维和二维情况进行了测试。与实验室数据的一致性非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-layer approach to wave modelling
A set of model equations for water–wave propagation is derived by piecewise integration of the primitive equations of motion through two arbitrary layers. Within each layer, an independent velocity profile is derived. With two separate velocity profiles, matched at the interface of the two layers, the resulting set of equations has three free parameters, allowing for an optimization with known analytical properties of water waves. The optimized model equations show good linear wave characteristics up to kh ≈ 6, while the second–order nonlinear behaviour is captured to kh ≈ 6 as well. A numerical algorithm for solving the model equations is developed and tested against one– and two–horizontal–dimension cases. Agreement with laboratory data is excellent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信