高类似Courant代数群的线性化

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
H. Lang, Y. Sheng
{"title":"高类似Courant代数群的线性化","authors":"H. Lang, Y. Sheng","doi":"10.3934/jgm.2020025","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the spaces of sections of the $n$-th differential operator bundle $\\dev^n E$ and the $n$-th skew-symmetric jet bundle $\\jet_n E$ of a vector bundle $E$ are isomorphic to the spaces of linear $n$-vector fields and linear $n$-forms on $E^*$ respectively. Consequently, the $n$-omni-Lie algebroid $\\dev E\\oplus\\jet_n E$ introduced by Bi-Vitagliago-Zhang can be explained as certain linearization, which we call pseudo-linearization of the higher analogue of Courant algebroids $TE^*\\oplus \\wedge^nT^*E^*$. On the other hand, we show that the omni $n$-Lie algebroid $\\dev E\\oplus \\wedge^n\\jet E$ can also be explained as certain linearization, which we call Weinstein-linearization of the higher analogue of Courant algebroids $TE^*\\oplus \\wedge^nT^*E^*$. We also show that $n$-Lie algebroids, local $n$-Lie algebras and Nambu-Jacobi structures can be characterized as integrable subbundles of omni $n$-Lie algebroids.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Linearization of the higher analogue of Courant algebroids\",\"authors\":\"H. Lang, Y. Sheng\",\"doi\":\"10.3934/jgm.2020025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that the spaces of sections of the $n$-th differential operator bundle $\\\\dev^n E$ and the $n$-th skew-symmetric jet bundle $\\\\jet_n E$ of a vector bundle $E$ are isomorphic to the spaces of linear $n$-vector fields and linear $n$-forms on $E^*$ respectively. Consequently, the $n$-omni-Lie algebroid $\\\\dev E\\\\oplus\\\\jet_n E$ introduced by Bi-Vitagliago-Zhang can be explained as certain linearization, which we call pseudo-linearization of the higher analogue of Courant algebroids $TE^*\\\\oplus \\\\wedge^nT^*E^*$. On the other hand, we show that the omni $n$-Lie algebroid $\\\\dev E\\\\oplus \\\\wedge^n\\\\jet E$ can also be explained as certain linearization, which we call Weinstein-linearization of the higher analogue of Courant algebroids $TE^*\\\\oplus \\\\wedge^nT^*E^*$. We also show that $n$-Lie algebroids, local $n$-Lie algebras and Nambu-Jacobi structures can be characterized as integrable subbundles of omni $n$-Lie algebroids.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2020025\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2020025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文证明了向量束$E$的$n$-微分算子束$\dev^n E$和$n$-偏对称射流束$\jet_n E$的截面空间分别同构于$E^*$上的线性$n$-向量场和线性$n$-形式的空间。因此,Bi-Vitagliago-Zhang引入的$n$- omnii - lie代数群$\dev E\oplus\jet_n E$可以解释为Courant代数群$TE^*\oplus \wedge^nT^*E^*$的伪线性化。另一方面,我们证明了全n-李代数元E\ dev E\o + \wedge^n\jet E$也可以被解释为一定的线性化,我们称之为Courant代数元的高级类似物TE^*\o + \wedge^nT^*E^*$的温斯坦线性化。我们还证明了$n$-李代数、局部$n$-李代数和Nambu-Jacobi结构可以被表征为全$n$-李代数的可积子束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearization of the higher analogue of Courant algebroids
In this paper, we show that the spaces of sections of the $n$-th differential operator bundle $\dev^n E$ and the $n$-th skew-symmetric jet bundle $\jet_n E$ of a vector bundle $E$ are isomorphic to the spaces of linear $n$-vector fields and linear $n$-forms on $E^*$ respectively. Consequently, the $n$-omni-Lie algebroid $\dev E\oplus\jet_n E$ introduced by Bi-Vitagliago-Zhang can be explained as certain linearization, which we call pseudo-linearization of the higher analogue of Courant algebroids $TE^*\oplus \wedge^nT^*E^*$. On the other hand, we show that the omni $n$-Lie algebroid $\dev E\oplus \wedge^n\jet E$ can also be explained as certain linearization, which we call Weinstein-linearization of the higher analogue of Courant algebroids $TE^*\oplus \wedge^nT^*E^*$. We also show that $n$-Lie algebroids, local $n$-Lie algebras and Nambu-Jacobi structures can be characterized as integrable subbundles of omni $n$-Lie algebroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信