Kerr度规中闭时型曲线的Feynman传播子

M. Socolovsky
{"title":"Kerr度规中闭时型曲线的Feynman传播子","authors":"M. Socolovsky","doi":"10.22606/tp.2021.63001","DOIUrl":null,"url":null,"abstract":"We compute the Feynman propagator associated with closed timelike curves in the neighborhood of the ring singularity in the Kerr metric. The propagator is well defined outside r = 0, where it ceases to exist.","PeriodicalId":49658,"journal":{"name":"Progress of Theoretical Physics","volume":"355 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feynman Propagator for Closed Timelike Curves in the Kerr Metric\",\"authors\":\"M. Socolovsky\",\"doi\":\"10.22606/tp.2021.63001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the Feynman propagator associated with closed timelike curves in the neighborhood of the ring singularity in the Kerr metric. The propagator is well defined outside r = 0, where it ceases to exist.\",\"PeriodicalId\":49658,\"journal\":{\"name\":\"Progress of Theoretical Physics\",\"volume\":\"355 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22606/tp.2021.63001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22606/tp.2021.63001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了Kerr度规环奇点附近闭合类时曲线的费曼传播子。传播子在r = 0之外有很好的定义,在那里它不再存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feynman Propagator for Closed Timelike Curves in the Kerr Metric
We compute the Feynman propagator associated with closed timelike curves in the neighborhood of the ring singularity in the Kerr metric. The propagator is well defined outside r = 0, where it ceases to exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress of Theoretical Physics
Progress of Theoretical Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信