离散积空间中的对数Sobolev不等式

K. Marton
{"title":"离散积空间中的对数Sobolev不等式","authors":"K. Marton","doi":"10.1017/S0963548319000099","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to prove an inequality between relative entropy and the sum of average conditional relative entropies of the following form: for a fixed probability measure q on , ( is a finite set), and any probability measure on , (*) $$D(p||q){\\rm{\\le}}C \\cdot \\sum\\limits_{i = 1}^n {{\\rm{\\mathbb{E}}}_p D(p_i ( \\cdot |Y_1 ,{\\rm{ }}...,{\\rm{ }}Y_{i - 1} ,{\\rm{ }}Y_{i + 1} ,...,{\\rm{ }}Y_n )||q_i ( \\cdot |Y_1 ,{\\rm{ }}...,{\\rm{ }}Y_{i - 1} ,{\\rm{ }}Y_{i + 1} ,{\\rm{ }}...,{\\rm{ }}Y_n )),} $$ where pi(· |y1, …, yi−1, yi+1, …, yn) and qi(· |x1, …, xi−1, xi+1, …, xn) denote the local specifications for p resp. q, that is, the conditional distributions of the ith coordinate, given the other coordinates. The constant C depends on (the local specifications of) q. The inequality (*) ismeaningful in product spaces, in both the discrete and the continuous case, and can be used to prove a logarithmic Sobolev inequality for q, provided uniform logarithmic Sobolev inequalities are available for qi(· |x1, …, xi−1, xi+1, …, xn), for all fixed i and fixed (x1, …, xi−1, xi+1, …, xn). Inequality (*) directly implies that the Gibbs sampler associated with q is a contraction for relative entropy. In this paper we derive inequality (*), and thereby a logarithmic Sobolev inequality, in discrete product spaces, by proving inequalities for an appropriate Wasserstein-like distance.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Logarithmic Sobolev inequalities in discrete product spaces\",\"authors\":\"K. Marton\",\"doi\":\"10.1017/S0963548319000099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to prove an inequality between relative entropy and the sum of average conditional relative entropies of the following form: for a fixed probability measure q on , ( is a finite set), and any probability measure on , (*) $$D(p||q){\\\\rm{\\\\le}}C \\\\cdot \\\\sum\\\\limits_{i = 1}^n {{\\\\rm{\\\\mathbb{E}}}_p D(p_i ( \\\\cdot |Y_1 ,{\\\\rm{ }}...,{\\\\rm{ }}Y_{i - 1} ,{\\\\rm{ }}Y_{i + 1} ,...,{\\\\rm{ }}Y_n )||q_i ( \\\\cdot |Y_1 ,{\\\\rm{ }}...,{\\\\rm{ }}Y_{i - 1} ,{\\\\rm{ }}Y_{i + 1} ,{\\\\rm{ }}...,{\\\\rm{ }}Y_n )),} $$ where pi(· |y1, …, yi−1, yi+1, …, yn) and qi(· |x1, …, xi−1, xi+1, …, xn) denote the local specifications for p resp. q, that is, the conditional distributions of the ith coordinate, given the other coordinates. The constant C depends on (the local specifications of) q. The inequality (*) ismeaningful in product spaces, in both the discrete and the continuous case, and can be used to prove a logarithmic Sobolev inequality for q, provided uniform logarithmic Sobolev inequalities are available for qi(· |x1, …, xi−1, xi+1, …, xn), for all fixed i and fixed (x1, …, xi−1, xi+1, …, xn). Inequality (*) directly implies that the Gibbs sampler associated with q is a contraction for relative entropy. In this paper we derive inequality (*), and thereby a logarithmic Sobolev inequality, in discrete product spaces, by proving inequalities for an appropriate Wasserstein-like distance.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548319000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

摘要本文的目的是证明相对熵与平均条件相对熵之和之间的不等式,其形式如下:对于一个固定的概率测度q,(是一个有限集合),和任意一个概率测度(*)$$D(p||q){\rm{\le}}C \cdot \sum\limits_{i = 1}^n {{\rm{\mathbb{E}}}_p D(p_i ( \cdot |Y_1 ,{\rm{ }}...,{\rm{ }}Y_{i - 1} ,{\rm{ }}Y_{i + 1} ,...,{\rm{ }}Y_n )||q_i ( \cdot |Y_1 ,{\rm{ }}...,{\rm{ }}Y_{i - 1} ,{\rm{ }}Y_{i + 1} ,{\rm{ }}...,{\rm{ }}Y_n )),} $$,其中pi(·|y1,…,yi−1,yi+1,…,yn)和qi(·|x1,…,xi−1,xi+1,…,xn)表示p的局部规范。Q,也就是第i个坐标的条件分布,给定其他坐标。常数C依赖于q的(局部规范)。不等式(*)在离散和连续情况下的积空间中都是有意义的,并且可以用来证明q的一个对数Sobolev不等式,前提是qi(·|x1,…,xi−1,xi+1,…,xn)对于所有固定i和固定(x1,…,xi−1,xi+1,…,xn)具有一致的对数Sobolev不等式。不等式(*)直接表示与q相关的吉布斯采样器是相对熵的收缩。本文通过证明一个适当的类wasserstein距离的不等式,推导出离散积空间中的不等式(*),从而得到一个对数Sobolev不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic Sobolev inequalities in discrete product spaces
Abstract The aim of this paper is to prove an inequality between relative entropy and the sum of average conditional relative entropies of the following form: for a fixed probability measure q on , ( is a finite set), and any probability measure on , (*) $$D(p||q){\rm{\le}}C \cdot \sum\limits_{i = 1}^n {{\rm{\mathbb{E}}}_p D(p_i ( \cdot |Y_1 ,{\rm{ }}...,{\rm{ }}Y_{i - 1} ,{\rm{ }}Y_{i + 1} ,...,{\rm{ }}Y_n )||q_i ( \cdot |Y_1 ,{\rm{ }}...,{\rm{ }}Y_{i - 1} ,{\rm{ }}Y_{i + 1} ,{\rm{ }}...,{\rm{ }}Y_n )),} $$ where pi(· |y1, …, yi−1, yi+1, …, yn) and qi(· |x1, …, xi−1, xi+1, …, xn) denote the local specifications for p resp. q, that is, the conditional distributions of the ith coordinate, given the other coordinates. The constant C depends on (the local specifications of) q. The inequality (*) ismeaningful in product spaces, in both the discrete and the continuous case, and can be used to prove a logarithmic Sobolev inequality for q, provided uniform logarithmic Sobolev inequalities are available for qi(· |x1, …, xi−1, xi+1, …, xn), for all fixed i and fixed (x1, …, xi−1, xi+1, …, xn). Inequality (*) directly implies that the Gibbs sampler associated with q is a contraction for relative entropy. In this paper we derive inequality (*), and thereby a logarithmic Sobolev inequality, in discrete product spaces, by proving inequalities for an appropriate Wasserstein-like distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信