子空间循环迭代方法综述

Q1 Mathematics
Kirk M. Soodhalter, Eric de Sturler, Misha E. Kilmer
{"title":"子空间循环迭代方法综述","authors":"Kirk M. Soodhalter,&nbsp;Eric de Sturler,&nbsp;Misha E. Kilmer","doi":"10.1002/gamm.202000016","DOIUrl":null,"url":null,"abstract":"<p>This survey concerns <i>subspace recycling methods</i>, a popular class of iterative methods that enable effective reuse of subspace information in order to speed up convergence and find good initial vectors over a sequence of linear systems with slowly changing coefficient matrices, multiple right-hand sides, or both. The subspace information that is recycled is usually generated during the run of an iterative method (usually a Krylov subspace method) on one or more of the systems. Following introduction of definitions and notation, we examine the history of early augmentation schemes along with deflation preconditioning schemes and their influence on the development of recycling methods. We then discuss a general residual constraint framework through which many augmented Krylov and recycling methods can both be viewed. We review several augmented and recycling methods within this framework. We then discuss some known effective strategies for choosing subspaces to recycle before taking the reader through more recent developments that have generalized recycling for (sequences of) shifted linear systems, some of them with multiple right-hand sides in mind. We round out our survey with a brief review of application areas that have seen benefit from subspace recycling methods.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202000016","citationCount":"31","resultStr":"{\"title\":\"A survey of subspace recycling iterative methods\",\"authors\":\"Kirk M. Soodhalter,&nbsp;Eric de Sturler,&nbsp;Misha E. Kilmer\",\"doi\":\"10.1002/gamm.202000016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This survey concerns <i>subspace recycling methods</i>, a popular class of iterative methods that enable effective reuse of subspace information in order to speed up convergence and find good initial vectors over a sequence of linear systems with slowly changing coefficient matrices, multiple right-hand sides, or both. The subspace information that is recycled is usually generated during the run of an iterative method (usually a Krylov subspace method) on one or more of the systems. Following introduction of definitions and notation, we examine the history of early augmentation schemes along with deflation preconditioning schemes and their influence on the development of recycling methods. We then discuss a general residual constraint framework through which many augmented Krylov and recycling methods can both be viewed. We review several augmented and recycling methods within this framework. We then discuss some known effective strategies for choosing subspaces to recycle before taking the reader through more recent developments that have generalized recycling for (sequences of) shifted linear systems, some of them with multiple right-hand sides in mind. We round out our survey with a brief review of application areas that have seen benefit from subspace recycling methods.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/gamm.202000016\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 31

摘要

这项调查涉及子空间回收方法,这是一种流行的迭代方法,可以有效地重用子空间信息,以加快收敛速度,并在具有缓慢变化的系数矩阵、多个右侧或两者的线性系统序列上找到良好的初始向量。回收的子空间信息通常是在一个或多个系统上运行迭代方法(通常是Krylov子空间方法)期间生成的。在介绍定义和符号之后,我们研究了早期增强方案的历史以及通货紧缩预处理方案及其对回收方法发展的影响。然后,我们讨论了一个一般的剩余约束框架,通过它可以看到许多增强的Krylov和回收方法。我们在此框架内回顾了几种增强和回收方法。然后,我们讨论了一些已知的有效策略,用于选择要回收的子空间,然后再向读者介绍移位线性系统(序列)的广义回收的最新发展,其中一些考虑了多个右手边。最后,我们简要回顾了从子空间回收方法中获益的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey of subspace recycling iterative methods

This survey concerns subspace recycling methods, a popular class of iterative methods that enable effective reuse of subspace information in order to speed up convergence and find good initial vectors over a sequence of linear systems with slowly changing coefficient matrices, multiple right-hand sides, or both. The subspace information that is recycled is usually generated during the run of an iterative method (usually a Krylov subspace method) on one or more of the systems. Following introduction of definitions and notation, we examine the history of early augmentation schemes along with deflation preconditioning schemes and their influence on the development of recycling methods. We then discuss a general residual constraint framework through which many augmented Krylov and recycling methods can both be viewed. We review several augmented and recycling methods within this framework. We then discuss some known effective strategies for choosing subspaces to recycle before taking the reader through more recent developments that have generalized recycling for (sequences of) shifted linear systems, some of them with multiple right-hand sides in mind. We round out our survey with a brief review of application areas that have seen benefit from subspace recycling methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信