黎曼流形上的缠绕高斯过程回归

Anton Mallasto, Aasa Feragen
{"title":"黎曼流形上的缠绕高斯过程回归","authors":"Anton Mallasto, Aasa Feragen","doi":"10.1109/CVPR.2018.00585","DOIUrl":null,"url":null,"abstract":"Gaussian process (GP) regression is a powerful tool in non-parametric regression providing uncertainty estimates. However, it is limited to data in vector spaces. In fields such as shape analysis and diffusion tensor imaging, the data often lies on a manifold, making GP regression nonviable, as the resulting predictive distribution does not live in the correct geometric space. We tackle the problem by defining wrapped Gaussian processes (WGPs) on Riemannian manifolds, using the probabilistic setting to generalize GP regression to the context of manifold-valued targets. The method is validated empirically on diffusion weighted imaging (DWI) data, directional data on the sphere and in the Kendall shape space, endorsing WGP regression as an efficient and flexible tool for manifold-valued regression.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"359 1","pages":"5580-5588"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Wrapped Gaussian Process Regression on Riemannian Manifolds\",\"authors\":\"Anton Mallasto, Aasa Feragen\",\"doi\":\"10.1109/CVPR.2018.00585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian process (GP) regression is a powerful tool in non-parametric regression providing uncertainty estimates. However, it is limited to data in vector spaces. In fields such as shape analysis and diffusion tensor imaging, the data often lies on a manifold, making GP regression nonviable, as the resulting predictive distribution does not live in the correct geometric space. We tackle the problem by defining wrapped Gaussian processes (WGPs) on Riemannian manifolds, using the probabilistic setting to generalize GP regression to the context of manifold-valued targets. The method is validated empirically on diffusion weighted imaging (DWI) data, directional data on the sphere and in the Kendall shape space, endorsing WGP regression as an efficient and flexible tool for manifold-valued regression.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"359 1\",\"pages\":\"5580-5588\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

高斯过程(GP)回归是非参数回归中提供不确定性估计的有力工具。然而,它仅限于向量空间中的数据。在形状分析和扩散张量成像等领域,数据通常位于流形上,使得GP回归不可行,因为得到的预测分布不在正确的几何空间中。我们通过在黎曼流形上定义包裹高斯过程(WGPs)来解决这个问题,使用概率设置将GP回归推广到流形值目标的上下文中。该方法在扩散加权成像(DWI)数据、球体和Kendall形状空间上的方向数据上进行了实证验证,证明WGP回归是一种高效、灵活的流形值回归工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wrapped Gaussian Process Regression on Riemannian Manifolds
Gaussian process (GP) regression is a powerful tool in non-parametric regression providing uncertainty estimates. However, it is limited to data in vector spaces. In fields such as shape analysis and diffusion tensor imaging, the data often lies on a manifold, making GP regression nonviable, as the resulting predictive distribution does not live in the correct geometric space. We tackle the problem by defining wrapped Gaussian processes (WGPs) on Riemannian manifolds, using the probabilistic setting to generalize GP regression to the context of manifold-valued targets. The method is validated empirically on diffusion weighted imaging (DWI) data, directional data on the sphere and in the Kendall shape space, endorsing WGP regression as an efficient and flexible tool for manifold-valued regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信