$ \mathbb{C}P^2 $和椭圆函数上的广义Kähler结构

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
F. Bonechi, J. Qiu, M. Tarlini
{"title":"$ \\mathbb{C}P^2 $和椭圆函数上的广义Kähler结构","authors":"F. Bonechi, J. Qiu, M. Tarlini","doi":"10.3934/jgm.2023009","DOIUrl":null,"url":null,"abstract":"We construct a toric generalised Kähler structure on $ \\mathbb{C}P^2 $ and show that the various structures such as the complex structure, metric etc are expressed in terms of certain elliptic functions. We also compute the generalised Kähler potential in terms of integrals of elliptic functions.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"39 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalised Kähler structure on $ \\\\mathbb{C}P^2 $ and elliptic functions\",\"authors\":\"F. Bonechi, J. Qiu, M. Tarlini\",\"doi\":\"10.3934/jgm.2023009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a toric generalised Kähler structure on $ \\\\mathbb{C}P^2 $ and show that the various structures such as the complex structure, metric etc are expressed in terms of certain elliptic functions. We also compute the generalised Kähler potential in terms of integrals of elliptic functions.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2023009\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2023009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们在$ \mathbb{C}P^2 $上构造了一个环形广义Kähler结构,并证明了各种结构如复结构、度量等都是用一定的椭圆函数表示的。我们也用椭圆函数的积分来计算广义Kähler势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalised Kähler structure on $ \mathbb{C}P^2 $ and elliptic functions
We construct a toric generalised Kähler structure on $ \mathbb{C}P^2 $ and show that the various structures such as the complex structure, metric etc are expressed in terms of certain elliptic functions. We also compute the generalised Kähler potential in terms of integrals of elliptic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信