弯曲管中光谱阈值的下界

P. Exner, P. Freitas, D. Krejčiřík
{"title":"弯曲管中光谱阈值的下界","authors":"P. Exner, P. Freitas, D. Krejčiřík","doi":"10.1098/rspa.2004.1356","DOIUrl":null,"url":null,"abstract":"We consider the Laplacian in curved tubes of arbitrary cross–section rotating together with the Frenet frame along curves in Euclidean spaces of arbitrary dimension, subject to Dirichlet boundary conditions on the cylindrical surface and Neumann conditions at the ends of the tube. We prove that the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Dirichlet Laplacian in a torus determined by the geometry of the tube.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"338 1","pages":"3457 - 3467"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A lower bound to the spectral threshold in curved tubes\",\"authors\":\"P. Exner, P. Freitas, D. Krejčiřík\",\"doi\":\"10.1098/rspa.2004.1356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Laplacian in curved tubes of arbitrary cross–section rotating together with the Frenet frame along curves in Euclidean spaces of arbitrary dimension, subject to Dirichlet boundary conditions on the cylindrical surface and Neumann conditions at the ends of the tube. We prove that the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Dirichlet Laplacian in a torus determined by the geometry of the tube.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"338 1\",\"pages\":\"3457 - 3467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

考虑任意截面的弯曲管中的拉普拉斯算子在任意维欧几里得空间中沿曲线与Frenet框架一起旋转,同时满足柱面上的Dirichlet边界条件和管端处的Neumann条件。我们证明了拉普拉斯算子的谱阈值是由管的几何形状决定的环面上狄利克雷拉普拉斯算子的最低特征值从下估计出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower bound to the spectral threshold in curved tubes
We consider the Laplacian in curved tubes of arbitrary cross–section rotating together with the Frenet frame along curves in Euclidean spaces of arbitrary dimension, subject to Dirichlet boundary conditions on the cylindrical surface and Neumann conditions at the ends of the tube. We prove that the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Dirichlet Laplacian in a torus determined by the geometry of the tube.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信