非织造麻纤维增强Acrodur生物复合材料及其在水中的力学性能

Islam Ms
{"title":"非织造麻纤维增强Acrodur生物复合材料及其在水中的力学性能","authors":"Islam Ms","doi":"10.31031/RDMS.2020.14.000838","DOIUrl":null,"url":null,"abstract":"The use of natural plant fibres such as flax, hemp, kenaf, jute and wood fibres as reinforcement in both thermoplastics and thermosets has increased dramatically during the last twenty years. These natural fibre biocomposites compare well with glass fibre reinforced polymer composites in terms of recyclability when using a thermoplastic matrix and energy recovery through incineration when using a thermoset matrix, and with traditional structural materials in terms of specific mechanical properties [1]. Thermoset polymers are particularly attractive as matrix materials for natural plant fibre reinforced biocomposite production as they generally have reactive functional groups that make them compatible with hydrophilic fibre surfaces [1].","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonwoven Hemp Fibre Reinforced Acrodur Biocomposites and their Mechanical Performance in Immersed Water\",\"authors\":\"Islam Ms\",\"doi\":\"10.31031/RDMS.2020.14.000838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of natural plant fibres such as flax, hemp, kenaf, jute and wood fibres as reinforcement in both thermoplastics and thermosets has increased dramatically during the last twenty years. These natural fibre biocomposites compare well with glass fibre reinforced polymer composites in terms of recyclability when using a thermoplastic matrix and energy recovery through incineration when using a thermoset matrix, and with traditional structural materials in terms of specific mechanical properties [1]. Thermoset polymers are particularly attractive as matrix materials for natural plant fibre reinforced biocomposite production as they generally have reactive functional groups that make them compatible with hydrophilic fibre surfaces [1].\",\"PeriodicalId\":20943,\"journal\":{\"name\":\"Research & Development in Material Science\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research & Development in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31031/RDMS.2020.14.000838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research & Development in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/RDMS.2020.14.000838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天然植物纤维如亚麻、大麻、红麻、黄麻和木纤维在热塑性塑料和热固性塑料中作为增强材料的使用在过去二十年中急剧增加。这些天然纤维生物复合材料在热塑性基体的可回收性和热固性基体的焚烧能量回收方面与玻璃纤维增强聚合物复合材料相比,在特定机械性能方面与传统结构材料相比要好。热固性聚合物作为天然植物纤维增强生物复合材料的基质材料特别有吸引力,因为它们通常具有反应性官能团,使它们与亲水性纤维表面相容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonwoven Hemp Fibre Reinforced Acrodur Biocomposites and their Mechanical Performance in Immersed Water
The use of natural plant fibres such as flax, hemp, kenaf, jute and wood fibres as reinforcement in both thermoplastics and thermosets has increased dramatically during the last twenty years. These natural fibre biocomposites compare well with glass fibre reinforced polymer composites in terms of recyclability when using a thermoplastic matrix and energy recovery through incineration when using a thermoset matrix, and with traditional structural materials in terms of specific mechanical properties [1]. Thermoset polymers are particularly attractive as matrix materials for natural plant fibre reinforced biocomposite production as they generally have reactive functional groups that make them compatible with hydrophilic fibre surfaces [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信