{"title":"阿斯巴甜诱导白化大鼠免疫器官电解质稳态的改变","authors":"Arbind Kumar Choudhary, Sheela Devi Rathinasamy","doi":"10.1016/j.bionut.2013.12.006","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Aspartame is rapidly and completely metabolized in humans and experimental animals to aspartic acid (40%), </span>phenylalanine (50%) and methanol (10%). Methanol, a toxic metabolite is primarily metabolized by oxidation to formaldehyde and then to </span>formate<span>. These processes are accompanied by the formation of superoxide anion and hydrogen peroxide. This study is focused to understand whether the oral administration of Aspartame (40</span></span> <span>mg/kg bw) for 15 days, 30 days, and 90 days have any effect on immune organs. Damage to plasma membrane was assessed by levels of membrane-bound ATPases. Oxidative stress<span><span> status was assessed by alterations in level of lipid peroxides, protein carbonyls, protein thiol and lipid-soluble antioxidant </span>vitamin E.<span> To mimic human methanol metabolism, folate-deficient animals were used. There was decrease in all membrane-bound ATPases activities<span><span> in immune organs. Aspartame administration to rats inducing excess free radical generation is confirmed by increase in </span>lipid peroxidation, obvious which is also again substantiated by the elevated protein carbonyl and decrease in protein thiol in this study. These excess free radical generations also decrease the cellularity (reduction in organ weight and cell count) of immune organs.</span></span></span></span></p></div>","PeriodicalId":100182,"journal":{"name":"Biomedicine & Preventive Nutrition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bionut.2013.12.006","citationCount":"7","resultStr":"{\"title\":\"Aspartame induces alteration in electrolytes homeostasis of immune organs in wistar albino rats\",\"authors\":\"Arbind Kumar Choudhary, Sheela Devi Rathinasamy\",\"doi\":\"10.1016/j.bionut.2013.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Aspartame is rapidly and completely metabolized in humans and experimental animals to aspartic acid (40%), </span>phenylalanine (50%) and methanol (10%). Methanol, a toxic metabolite is primarily metabolized by oxidation to formaldehyde and then to </span>formate<span>. These processes are accompanied by the formation of superoxide anion and hydrogen peroxide. This study is focused to understand whether the oral administration of Aspartame (40</span></span> <span>mg/kg bw) for 15 days, 30 days, and 90 days have any effect on immune organs. Damage to plasma membrane was assessed by levels of membrane-bound ATPases. Oxidative stress<span><span> status was assessed by alterations in level of lipid peroxides, protein carbonyls, protein thiol and lipid-soluble antioxidant </span>vitamin E.<span> To mimic human methanol metabolism, folate-deficient animals were used. There was decrease in all membrane-bound ATPases activities<span><span> in immune organs. Aspartame administration to rats inducing excess free radical generation is confirmed by increase in </span>lipid peroxidation, obvious which is also again substantiated by the elevated protein carbonyl and decrease in protein thiol in this study. These excess free radical generations also decrease the cellularity (reduction in organ weight and cell count) of immune organs.</span></span></span></span></p></div>\",\"PeriodicalId\":100182,\"journal\":{\"name\":\"Biomedicine & Preventive Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bionut.2013.12.006\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & Preventive Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210523913000792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Preventive Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210523913000792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aspartame induces alteration in electrolytes homeostasis of immune organs in wistar albino rats
Aspartame is rapidly and completely metabolized in humans and experimental animals to aspartic acid (40%), phenylalanine (50%) and methanol (10%). Methanol, a toxic metabolite is primarily metabolized by oxidation to formaldehyde and then to formate. These processes are accompanied by the formation of superoxide anion and hydrogen peroxide. This study is focused to understand whether the oral administration of Aspartame (40mg/kg bw) for 15 days, 30 days, and 90 days have any effect on immune organs. Damage to plasma membrane was assessed by levels of membrane-bound ATPases. Oxidative stress status was assessed by alterations in level of lipid peroxides, protein carbonyls, protein thiol and lipid-soluble antioxidant vitamin E. To mimic human methanol metabolism, folate-deficient animals were used. There was decrease in all membrane-bound ATPases activities in immune organs. Aspartame administration to rats inducing excess free radical generation is confirmed by increase in lipid peroxidation, obvious which is also again substantiated by the elevated protein carbonyl and decrease in protein thiol in this study. These excess free radical generations also decrease the cellularity (reduction in organ weight and cell count) of immune organs.