基于语义分割技术的城市开放空间行为提取研究

X. Liu, Chenqi Li, Yu Chen
{"title":"基于语义分割技术的城市开放空间行为提取研究","authors":"X. Liu, Chenqi Li, Yu Chen","doi":"10.1109/cvidliccea56201.2022.9824593","DOIUrl":null,"url":null,"abstract":"Using semantic segmentation technology based on a convolutional neural network (CNN) environment, urban open space orthophotos with typical feature segments collected by UAVs are used as the basis of neural network training data, and the U-net semantic segmentation algorithm research framework is used to import remotely sensed images into the algorithm model, encode the data with characterization, strengthen its behavioral features, and finally output the data with behavioral feature information This is used to build a training set of behavioral elements of the urban open space environment. Based on this training set, the training set can be used to classify and identify urban open spaces with similar environmental characteristics, thus quickly building a digital information model of environmental behavior elements in urban open spaces, improving the digital efficiency of environmental behavior research and saving a lot of time and cost for subsequent analysis.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"12 1","pages":"921-925"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on urban open space behavior extraction based on semantic segmentation technology\",\"authors\":\"X. Liu, Chenqi Li, Yu Chen\",\"doi\":\"10.1109/cvidliccea56201.2022.9824593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using semantic segmentation technology based on a convolutional neural network (CNN) environment, urban open space orthophotos with typical feature segments collected by UAVs are used as the basis of neural network training data, and the U-net semantic segmentation algorithm research framework is used to import remotely sensed images into the algorithm model, encode the data with characterization, strengthen its behavioral features, and finally output the data with behavioral feature information This is used to build a training set of behavioral elements of the urban open space environment. Based on this training set, the training set can be used to classify and identify urban open spaces with similar environmental characteristics, thus quickly building a digital information model of environmental behavior elements in urban open spaces, improving the digital efficiency of environmental behavior research and saving a lot of time and cost for subsequent analysis.\",\"PeriodicalId\":23649,\"journal\":{\"name\":\"Vision\",\"volume\":\"12 1\",\"pages\":\"921-925\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvidliccea56201.2022.9824593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用基于卷积神经网络(CNN)环境的语义分割技术,以无人机采集的具有典型特征段的城市开放空间正射影像图作为神经网络训练数据的基础,利用U-net语义分割算法研究框架将遥感影像导入算法模型,对数据进行表征编码,强化其行为特征;最后输出带有行为特征信息的数据,用于构建城市开放空间环境行为要素的训练集。基于该训练集,可以对具有相似环境特征的城市开放空间进行分类识别,从而快速构建城市开放空间环境行为要素的数字化信息模型,提高环境行为研究的数字化效率,为后续分析节省大量时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on urban open space behavior extraction based on semantic segmentation technology
Using semantic segmentation technology based on a convolutional neural network (CNN) environment, urban open space orthophotos with typical feature segments collected by UAVs are used as the basis of neural network training data, and the U-net semantic segmentation algorithm research framework is used to import remotely sensed images into the algorithm model, encode the data with characterization, strengthen its behavioral features, and finally output the data with behavioral feature information This is used to build a training set of behavioral elements of the urban open space environment. Based on this training set, the training set can be used to classify and identify urban open spaces with similar environmental characteristics, thus quickly building a digital information model of environmental behavior elements in urban open spaces, improving the digital efficiency of environmental behavior research and saving a lot of time and cost for subsequent analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信