具有独立对称权的极值组合结构的典型值

IF 0.7 4区 数学 Q2 MATHEMATICS
Yun Cheng, Yixue Liu, T. Tkocz, Albert Xu
{"title":"具有独立对称权的极值组合结构的典型值","authors":"Yun Cheng, Yixue Liu, T. Tkocz, Albert Xu","doi":"10.37236/10237","DOIUrl":null,"url":null,"abstract":"Suppose that the edges of a complete graph are assigned weights independently at random and we ask for the weight of the minimal-weight spanning tree, or perfect matching, or Hamiltonian cycle. For these and several other common optimisation problems, we establish asymptotically tight bounds when the weights are independent copies of a symmetric random variable (satisfying a mild condition on tail probabilities), in particular when the weights are Gaussian.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"34 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Typical Values of Extremal-Weight Combinatorial Structures with Independent Symmetric Weights\",\"authors\":\"Yun Cheng, Yixue Liu, T. Tkocz, Albert Xu\",\"doi\":\"10.37236/10237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that the edges of a complete graph are assigned weights independently at random and we ask for the weight of the minimal-weight spanning tree, or perfect matching, or Hamiltonian cycle. For these and several other common optimisation problems, we establish asymptotically tight bounds when the weights are independent copies of a symmetric random variable (satisfying a mild condition on tail probabilities), in particular when the weights are Gaussian.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/10237\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10237","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

假设一个完全图的边被随机独立地分配了权值,我们要求最小权值生成树的权值,或者说是完美匹配的权值,或者说是哈密顿循环的权值。对于这些和其他几个常见的优化问题,当权重是对称随机变量的独立副本(满足尾部概率的温和条件)时,我们建立了渐近紧界,特别是当权重是高斯的时候。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Typical Values of Extremal-Weight Combinatorial Structures with Independent Symmetric Weights
Suppose that the edges of a complete graph are assigned weights independently at random and we ask for the weight of the minimal-weight spanning tree, or perfect matching, or Hamiltonian cycle. For these and several other common optimisation problems, we establish asymptotically tight bounds when the weights are independent copies of a symmetric random variable (satisfying a mild condition on tail probabilities), in particular when the weights are Gaussian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信