一类具有临界增长和临界频率的p(x)- kirchhoff型方程的存在性结果

IF 0.5 4区 数学 Q3 MATHEMATICS
Rui He, Sihua Liang
{"title":"一类具有临界增长和临界频率的p(x)- kirchhoff型方程的存在性结果","authors":"Rui He, Sihua Liang","doi":"10.1063/5.0133793","DOIUrl":null,"url":null,"abstract":"This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"67 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency\",\"authors\":\"Rui He, Sihua Liang\",\"doi\":\"10.1063/5.0133793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0133793\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0133793","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一类具有临界增长和临界频率的p(x)-拉普拉斯方程。利用变分方法和一些分析技巧,得到了该问题非平凡解的存在性和多重性。本文的新颖之处在于两个方面:(1)该方程包含退化情况,对应于Kirchhoff项K在零处消失;(2)我们的论文是关于临界项的出现,可以看作是Zhang等人的结果的部分推广。j .不同。方程2018,1-20]关于该问题在亚临界情况下解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency
This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信