S. Noel, Stephen Purdy, Annie O’Rourke, E. Overly, Brianna Chen, Christine DiFonzo, Joseph Chen, George Sakellis, Mandira Hegde, Mano Sapra, Corrine M. Araki, Jeremy Martin, Ben Koehler, J. Keenan, Timothy Coen, William W. Watson, Jerry Harper, Kevin Jacobs
{"title":"网络情境理解的图形分析和可视化","authors":"S. Noel, Stephen Purdy, Annie O’Rourke, E. Overly, Brianna Chen, Christine DiFonzo, Joseph Chen, George Sakellis, Mandira Hegde, Mano Sapra, Corrine M. Araki, Jeremy Martin, Ben Koehler, J. Keenan, Timothy Coen, William W. Watson, Jerry Harper, Kevin Jacobs","doi":"10.1177/15485129211051385","DOIUrl":null,"url":null,"abstract":"This paper describes the Cyber Situational Understanding (Cyber SU) Proof of Concept (CySUP) software system for exploring advanced Cyber SU capabilities. CySUP distills complex interrelationships among cyberspace entities to provide the “so what” of cyber events for tactical operations. It combines a variety of software components to build an end-to-end pipeline for live data ingest that populates a graph knowledge base, with query-driven exploratory analysis and interactive visualizations. CySUP integrates with the core infrastructure environment supporting command posts to provide a cyber overlay onto a common operating picture oriented to tactical commanders. It also supports detailed analysis of cyberspace entities and relationships driven by ad hoc graph queries, including the conversion of natural language inquiries to formal query language. To help assess its Cyber SU capabilities, CySUP leverages automated cyber adversary emulation to carry out controlled cyberattack campaigns that impact elements of tactical missions.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graph analytics and visualization for cyber situational understanding\",\"authors\":\"S. Noel, Stephen Purdy, Annie O’Rourke, E. Overly, Brianna Chen, Christine DiFonzo, Joseph Chen, George Sakellis, Mandira Hegde, Mano Sapra, Corrine M. Araki, Jeremy Martin, Ben Koehler, J. Keenan, Timothy Coen, William W. Watson, Jerry Harper, Kevin Jacobs\",\"doi\":\"10.1177/15485129211051385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the Cyber Situational Understanding (Cyber SU) Proof of Concept (CySUP) software system for exploring advanced Cyber SU capabilities. CySUP distills complex interrelationships among cyberspace entities to provide the “so what” of cyber events for tactical operations. It combines a variety of software components to build an end-to-end pipeline for live data ingest that populates a graph knowledge base, with query-driven exploratory analysis and interactive visualizations. CySUP integrates with the core infrastructure environment supporting command posts to provide a cyber overlay onto a common operating picture oriented to tactical commanders. It also supports detailed analysis of cyberspace entities and relationships driven by ad hoc graph queries, including the conversion of natural language inquiries to formal query language. To help assess its Cyber SU capabilities, CySUP leverages automated cyber adversary emulation to carry out controlled cyberattack campaigns that impact elements of tactical missions.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211051385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211051385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Graph analytics and visualization for cyber situational understanding
This paper describes the Cyber Situational Understanding (Cyber SU) Proof of Concept (CySUP) software system for exploring advanced Cyber SU capabilities. CySUP distills complex interrelationships among cyberspace entities to provide the “so what” of cyber events for tactical operations. It combines a variety of software components to build an end-to-end pipeline for live data ingest that populates a graph knowledge base, with query-driven exploratory analysis and interactive visualizations. CySUP integrates with the core infrastructure environment supporting command posts to provide a cyber overlay onto a common operating picture oriented to tactical commanders. It also supports detailed analysis of cyberspace entities and relationships driven by ad hoc graph queries, including the conversion of natural language inquiries to formal query language. To help assess its Cyber SU capabilities, CySUP leverages automated cyber adversary emulation to carry out controlled cyberattack campaigns that impact elements of tactical missions.