热载子增强栅极电流及其对超薄栅极氧化物短沟道nMOSFET可靠性的影响

B. Min, O. Zia, M. Celik, R. Widenhofer, L. Kang, S. Song, S. Gonzales, A. Mendicino
{"title":"热载子增强栅极电流及其对超薄栅极氧化物短沟道nMOSFET可靠性的影响","authors":"B. Min, O. Zia, M. Celik, R. Widenhofer, L. Kang, S. Song, S. Gonzales, A. Mendicino","doi":"10.1109/IEDM.2001.979652","DOIUrl":null,"url":null,"abstract":"We have investigated hot carrier stress degradation for short channel (100 nm and 80 nm) nMOSFETs with ultra-thin gate oxides (2.5 nm). Under high drain bias, gate current was measured well above that is expected from direct tunneling itself We have found that this hot carrier enhanced gate current mechanism plays a significant role in the degradation of nMOSFETs. The degradation under very accelerated stress bias, where hot carrier enhanced gate current is dominant, was relatively insensitive to stress bias and time, compared to the degradation under low voltage hot carrier stress. Unless properly considered, the additional mechanism can cause the extrapolated lifetime to be overestimated.","PeriodicalId":13825,"journal":{"name":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","volume":"106 1","pages":"39.5.1-39.5.4"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hot carrier enhanced gate current and its impact on short channel nMOSFET reliability with ultra-thin gate oxides\",\"authors\":\"B. Min, O. Zia, M. Celik, R. Widenhofer, L. Kang, S. Song, S. Gonzales, A. Mendicino\",\"doi\":\"10.1109/IEDM.2001.979652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated hot carrier stress degradation for short channel (100 nm and 80 nm) nMOSFETs with ultra-thin gate oxides (2.5 nm). Under high drain bias, gate current was measured well above that is expected from direct tunneling itself We have found that this hot carrier enhanced gate current mechanism plays a significant role in the degradation of nMOSFETs. The degradation under very accelerated stress bias, where hot carrier enhanced gate current is dominant, was relatively insensitive to stress bias and time, compared to the degradation under low voltage hot carrier stress. Unless properly considered, the additional mechanism can cause the extrapolated lifetime to be overestimated.\",\"PeriodicalId\":13825,\"journal\":{\"name\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"volume\":\"106 1\",\"pages\":\"39.5.1-39.5.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2001.979652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2001.979652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了使用超薄栅极氧化物(2.5 nm)的短沟道(100 nm和80 nm) nmosfet的热载流子应力降解。在高漏极偏置下,测量的栅极电流远高于直接隧道本身的预期值。我们发现这种热载子增强的栅极电流机制在nmosfet的退化中起着重要作用。与低压热载子应力下的降解相比,在极加速应力偏置下,热载子增强栅极电流占主导地位,对应力偏置和时间的降解相对不敏感。除非考虑得当,否则额外的机制可能会导致外推的寿命被高估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hot carrier enhanced gate current and its impact on short channel nMOSFET reliability with ultra-thin gate oxides
We have investigated hot carrier stress degradation for short channel (100 nm and 80 nm) nMOSFETs with ultra-thin gate oxides (2.5 nm). Under high drain bias, gate current was measured well above that is expected from direct tunneling itself We have found that this hot carrier enhanced gate current mechanism plays a significant role in the degradation of nMOSFETs. The degradation under very accelerated stress bias, where hot carrier enhanced gate current is dominant, was relatively insensitive to stress bias and time, compared to the degradation under low voltage hot carrier stress. Unless properly considered, the additional mechanism can cause the extrapolated lifetime to be overestimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信